No Arabic abstract
We study cold atomic gases with a contact interaction and confined into one-dimension. Crossing the confinement induced resonance the correlation between the bosons increases, and introduces an effective range for the interaction potential. Using the mapping onto the sine-Gordon model and a Hubbard model in the strongly interacting regime allows us to derive the phase diagram in the presence of an optical lattice. We demonstrate the appearance of a phase transition from a Luttinger liquid with algebraic correlations into a crystalline phase with a particle on every second lattice site.
We investigate the dynamics of the rate function and of local observables after a quench in models which exhibit phase transitions between a superfluid and an insulator in their ground states. Zeros of the return probability, corresponding to singularities of the rate functions, have been suggested to indicate the emergence of dynamical criticality and we address the question of whether such zeros can be tied to the dynamics of physically relevant observables and hence order parameters in the systems. For this we first numerically analyze the dynamics of a hard-core boson gas in a one-dimensional waveguide when a quenched lattice potential is commensurate with the particle density. Such a system can undergo a pinning transition to an insulating state and we find non-analytic behavior in the evolution of the rate function which is indicative of dynamical phase transitions. In addition, we perform simulations of the time dependence of the momentum distribution and compare the periodicity of this collapse and revival cycle to that of the non-analyticities in the rate function: the two are found to be closely related only for deep quenches. We then confirm this observation by analytic calculations on a closely related discrete model of hard-core bosons in the presence of a staggered potential and find expressions for the rate function for the quenches. By extraction of the zeros of the Loschmidt amplitude we uncover a non-equilibrium timescale for the emergence of non-analyticities and discuss its relationship with the dynamics of the experimentally relevant parity operator.
We show that ultracold two-component fermionic dipolar gases in an optical lattice with strong two-body on-site loss can be used to realize a tunable effective spin-one model. Fermion number conservation provides an unusual constraint that $sum_i (S^z_i)^2$ is conserved, leading to a novel topological liquid phase in one dimension which can be thought of as the gapless analog of the Haldane gapped phase of a spin-one Heisenberg chain. The properties of this phase are calculated numerically via the infinite time-evolving block decimation method and analytically via a mapping to a one-mode Luttinger liquid with hidden spin information.
One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spatially visualizes this phenomenon in an inhomogeneous gas of ultra-cold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the timescale for the excitation depends on the atomic density at the beam position.
We demonstrate clear collective atomic recoil motion in a dilute, momentum-squeezed, ultra-cold degenerate fermion gas by circumventing the effects of Pauli blocking. Although gain from bosonic stimulation is necessarily absent because the quantum gas obeys Fermi-Dirac statistics, collective atomic recoil motion from the underlying wave-mixing process is clearly visible. With a single pump pulse of the proper polarization, we observe two mutually-perpendicular wave-mixing processes occurring simultaneously. Our experiments also indicate that the red-blue pump detuning asymmetry observed with Bose-Einstein condensates does not occur with fermions.
We study the exact solution for two atomic particles in an optical lattice interacting via a Feshbach resonance. The analysis includes the influence of all higher bands, as well as the proper renormalization of molecular energy in the closed channel. Using an expansion in Bloch waves, we show that the problem reduces to a simple matrix equation, which can be solved numerically very efficient. This exact solution allows for the precise determination of the parameters in the Hubbard model and the two-particle bound state energy. We identify the regime, where a single band Hubbard model fails to describe the scattering of the atoms as well as the bound states.