Do you want to publish a course? Click here

Diffusion of Neon in White Dwarf Stars

252   0   0.0 ( 0 )
 Added by Charles J. Horowitz
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sedimentation of the neutron rich isotope $^{22}$Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for $^{22}$Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants $D_i$ from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that $D_i$ in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter $Gamma>$ few), $D_i$ has a modest dependence on the charge $Z_i$ of the ion species, $D_i propto Z_i^{-2/3}$. However $D_i$ depends more strongly on $Z_i$ for weak coupling (smaller $Gamma$). We conclude that the self-diffusion constant $D_{rm Ne}$ for $^{22}$Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in $D_{rm Ne}$ should be unimportant for simulations of white dwarf cooling.



rate research

Read More

The first solids that form as a white dwarf (WD) starts to crystallize are expected to be greatly enriched in actinides. Previously [PRL 126, 1311010] we found that these solids might support a nuclear fission chain reaction that could ignite carbon burning and provide a new Type Ia supernova (SN Ia) mechanism involving an {it isolated} WD. Here we explore this fission mechanism in more detail and calculate the final temperature and density after the chain reaction and discuss a number of open physics questions.
The first solids that form as a cooling white dwarf (WD) starts to crystallize are expected to be greatly enriched in actinides. This is because the melting points of WD matter scale as $Z^{5/3}$ and actinides have the largest charge $Z$. We estimate that the solids may be so enriched in actinides that they could support a fission chain reaction. This reaction could ignite carbon burning and lead to the explosion of an isolated WD in a thermonuclear supernova (SN Ia). Our mechanism could potentially explain SN Ia with sub-Chandrasekhar ejecta masses and short delay times.
White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.
139 - Steven D. Kawaler 2014
I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.
109 - Piotr M. Kowalski 2016
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا