Do you want to publish a course? Click here

Observing the Luminosity Increase and Roche Lobe Overflow of Planet Destruction

119   0   0.0 ( 0 )
 Added by Stuart Taylor
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The destruction of planets by migration into the star will release significant amounts of energy and material, which will present opportunities to observational study planets in new ways. To observe planet destruction, it is important to understand the processes of how this energy and material is released as planets are destroyed. It is not known how fast the large amounts of energy and material are released, making it difficult to predict how observable planet destruction will be. There is a huge amount of energy made available by falling deep into the stars potential well: Simple calculations show that many of the currently known hot Jupiters can potentially produce events as luminous as a small nova if the energy is released fast enough. To observe these events, the important questions are how will this energy be released, and whether the energy will be released rapidly enough to create an event luminous enough to be found by transient surveys. Alternatively, if planet destruction is slowed by the inward migration alternating with periods of outward migration caused by Roche lobe overflow (RLOF), then the primary signature may be the effects of the release of large amounts of gas. The infall of this gas also may significantly contribute to the systems luminosity. The release of planetary gas may be a searchable signature of planet destruction. Signs of runaway RLOF and outward or alternating RLOF should be searched for. Observing planet destruction will provide a new window for study of exoplanets.



rate research

Read More

131 - S. Yu , , L. Li 2009
In this study, we concentrate on the formation and evolution of hot subdwarfs binaries through the stable Roche lobe overflow (RLOF) channel of intermediate-mass binaries. We aim at setting out the properties of hot subdwarfs and their progenitors, so that we can understand the formation and evolution of hot subdwarfs comprehensively. We have obtained the ranges of the initial parameters of progenitor binaries and the properties of hot subdwarfs through the stable RLOF channel of intermediate-mass binaries, e.g. mass, envelope mass and age of hot subdwarfs. We have found that hot subdwarfs could be formed through the stable Roche lobe overflow at main sequence and Hertzsprung gap. We have also found that some subdwarf B or OB stars have anomalous high mass (around 1 solar mass) with thick envelope (0.07 solar mass to 0.16 solar mass) in our models. By comparing our theoretical results with observations on the hot subdwarfs in open clusters, we suppose a quantity of hot subdwarfs in binary systems might be found in open clusters in the future.
One of the important issues regarding the final evolution of stars is the impact of binarity. A rich zoo of peculiar, evolved objects are born from the interaction between the loosely bound envelope of a giant, and the gravitational pull of a companion. However, binary interactions are not understood from first principles, and the theoretical models are subject to many assumptions. It is currently agreed upon that hot subdwarf stars can only be formed through binary interaction, either through common envelope ejection or stable Roche-lobe overflow (RLOF) near the tip of the red giant branch (RGB). These systems are therefore an ideal testing ground for binary interaction models. With our long term study of wide hot subdwarf (sdB) binaries we aim to improve our current understanding of stable RLOF on the RGB by comparing the results of binary population synthesis studies with the observed population. In this article we describe the current model and possible improvements, and which observables can be used to test different parts of the interaction model.
We find that applying a theoretical wind mass-loss rate from Monte Carlo radiative transfer models for hydrogen-deficient stars results in significantly more leftover hydrogen following stable mass transfer through Roche-lobe overflow than when we use an extrapolation of an empirical fit for Galactic Wolf-Rayet stars, for which a negligible amount of hydrogen remains in a large set of binary stellar evolution computations. These findings have implications for modelling progenitors of Type Ib and Type IIb supernovae. Most importantly, our study stresses the sensitivity of the stellar evolution models to the assumed mass-loss rates and the need to develop a better theoretical understanding of stellar winds.
We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star-white-dwarf (NS-WD) binaries, and the detectability of these binaries by space GW detectors (e.g., Laser Interferometer Space Antenna, LISA; Taiji; Tianqin). A NS-WD binary becomes contact when the WD component fills its Roche lobe, at which the GW frequency ranges from ~0.0023 to 0.72 Hz for WD with masses ~0.05-1.4 Msun. We find that some high-mass NS-WD binaries may undergo direct coalescence after unstable mass transfer. However, the majority of NS-WD binaries can avoid direct coalescence because mass transfer after contact can lead to a reversal of the orbital evolution. Our model can well interpret the orbital evolution of the ultra-compact X-ray source 4U 1820--30. For a 4-year observation of 4U 1820--30, the expected signal-to-noise-ratio (SNR) in GW characteristic strain is ~11.0/10.4/2.2 (LISA/Taiji/Tianqin). The evolution of GW frequencies of NS-WD binaries depends on the WD masses. NS-WD binaries with masses larger than 4U 1820--30 are expected to be detected with significantly larger SNRs. For a (1.4+0.5) Msun NS-WD binary close to contact, the expected SNR for a one week observation is ~27/40/28 (LISA/Taiji/Tianqin). For NS-WD binaries with masses of (1.4+>~1.1) Msun, the significant change of GW frequencies and amplitudes can be measured, and thus it is possible to determine the binary evolution stage. At distances up to the edge of the Galaxy (~100 kpc), high-mass NS-WD binaries will be still detectable with SNR>~1.
We study the evolution of close binary systems formed by a normal (solar composition), intermediate mass donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These non-standard ingredients deeply modify the mass transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long standing mass transfer episodes, models including these effect suffer a number cycles of mass transfer and detachment. During mass transfer the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when detached they behave as a binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have a radius slightly smaller than its Roche lobe. Remarkably, these conditions are attained for orbital period and donor mass values in the range corresponding to a family of binary radio pulsars known as redbacks. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of sim million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disc surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا