Do you want to publish a course? Click here

Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic $(e,e^prime pi^pm)$ Reaction at Jefferson Lab

111   0   0.0 ( 0 )
 Added by Leonard Gamberg
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to perform precision studies of the transverse spin and transverse-momentum-dependent structure in the valence quark region for both the proton and the neutron. In this paper, we focus our discussion on a recently approved experiment on the neutron as an example of the precision studies planned at JLab. The new experiment will perform precision measurements of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production of charged pions from a 40-cm long transversely polarized $^3$He target in Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This new coincidence experiment in Hall A will employ a newly proposed solenoid spectrometer (SoLID). The large acceptance spectrometer and the high polarized luminosity will provide precise 4-D ($x$, $z$, $P_T$ and $Q^2$) data on the Collins, Sivers, and pretzelocity asymmetries for the neutron through the azimuthal angular dependence. The full 2$pi$ azimuthal angular coverage in the lab is essential in controlling the systematic uncertainties. The results from this experiment, when combined with the proton Collins asymmetry measurement and the Collins fragmentation function determined from the e$^+$e$^-$ collision data, will allow for a quark flavor separation in order to achieve a determination of the tensor charge of the d quark to a 10% accuracy. The extracted Sivers and pretzelocity asymmetries will provide important information to understand the correlations between the quark orbital angular momentum and the nucleon spin and between the quark spin and nucleon spin.



rate research

Read More

159 - Zhong-Bo Kang 2008
We study the single-transverse spin asymmetry for open charm production in the semi-inclusive lepton-hadron deep inelastic scattering. We calculate the asymmetry in terms of the QCD collinear factorization approach for $D$ mesons at high enough $P_{hperp}$, and find that the asymmetry is proportional to the twist-three tri-gluon correlation function in the proton. With a simple model for the tri-gluon correlation function, we estimate the asymmetry for both COMPASS and eRHIC kinematics, and discuss the possibilities of extracting the tri-gluon correlation function in these experiments.
76 - Xiaodong Jiang 2005
A Jefferson Lab experiment proposal was discussed in this talk. The experiment is designed to measure the beam-target double-spin asymmetries $A_{1n}^h$ in semi-inclusive deep-inelastic $vec n({vec e}, e^prime pi^+)X$ and $vec n({vec e}, e^prime pi^-)X$ reactions on a longitudinally polarized $^3$He target. In addition to $A_{1n}^h$, the flavor non-singlet combination $A_{1n}^{pi^+ - pi^-}$, in which the gluons do not contribute, will be determined with high precision to extract $Delta d_v(x)$ independent of the knowledge of the fragmentation functions. The data will also impose strong constraints on quark and gluon polarizations through a global NLO QCD fit.
Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $sin(psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.
70 - H. Dai , M. Murphy , V. Pandey 2018
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estimated. In the E12-14-012 experiment at Jefferson Lab Hall A, we have studied the properties of the argon nucleus by scattering a high-quality electron beam off a high-pressure gaseous argon target. Here, we present the measured $^{40}$Ar$(e,e^{prime})$ double differential cross section at incident electron energy $E=2.222$~GeV and scattering angle $theta = 15.541^circ$. The data cover a broad range of energy transfers, where quasielastic scattering and delta production are the dominant reaction mechanisms. The result for argon is compared to our previously reported cross sections for titanium and carbon, obtained in the same kinematical setup.
244 - J. Katich , X. Qian , Y. X. Zhao 2013
We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{uparrow}left(e,e right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of $1.7 < W < 2.9$ GeV, $1.0<Q^2<4.0$ GeV$^2$ and $0.16<x<0.65$. Neutron asymmetries were extracted using the effective nucleon polarization and measured proton-to-$^3$He cross section ratios. The measured neutron asymmetries are negative with an average value of $(-1.09 pm 0.38) times10^{-2}$ for invariant mass $W>2$ GeV, which is non-zero at the $2.89sigma$ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا