Pressure induced Superconductivity in Topological Compound Bi2Te3


Abstract in English

Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc^~3K) can be induced in Bi2Te3 as-grown single crystal (with hole-carriers) via pressure. The first-principles calculations show that the electronic structure under pressure remains to be topologically nontrivial, and the Dirac-type surface states can be well distinguished from bulk states at corresponding Fermi level. The proximity effect between superconducting bulk states and Dirac-type surface state could generate Majorana fermions on the surface. We also discuss the possibility that the bulk state could be a topological superconductor.

Download