Do you want to publish a course? Click here

Induction kinetics of a conditional pH stress response system in Escherichia coli

489   0   0.0 ( 0 )
 Added by Georg Fritz
 Publication date 2010
  fields Biology
and research's language is English




Ask ChatGPT about the research

The analysis of stress response systems in microorganisms can reveal molecular strategies for regulatory control and adaptation. Here, we focus on the Cad module, a subsystem of E. colis response to acidic stress, which is conditionally activated at low pH only when lysine is available. When expressed, the Cad system counteracts the elevated H+ concentration by converting lysine to cadaverine under the consumption of H+, and exporting cadaverine in exchange for external lysine. Surprisingly, the cad operon displays a transient response, even when the conditions for its induction persist. To quantitatively characterize the regulation of the Cad module, we have experimentally recorded and theoretically modeled the dynamics of important system variables. We establish a quantitative model that adequately describes and predicts the transient expression behavior for various initial conditions. Our quantitative analysis of the Cad system supports a negative feedback by external cadaverine as the origin of the transient response. Furthermore, the analysis puts causal constraints on the precise mechanism of signal transduction via the regulatory protein CadC.



rate research

Read More

Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein-protein binding and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long term memory associated with the accumulation of UmuD. Together, these provide a tight regulation of mutagenesis resulting, we show, in a digital turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biol. 3, e238) is the result of a positive feedback from Pol V to RecA filaments.
We have developed a mathematical model of transcriptional activation by MarA in Escherichia coli, and used the model to analyze measurements of MarA-dependent activity of the marRAB, sodA, and micF promoters in mar-rob- cells. The model rationalizes an unexpected poor correlation between the mid-point of in vivo promoter activity profiles and in vitro equilibrium constants for MarA binding to promoter sequences. Analysis of the promoter activity data using the model yielded the following predictions regarding activation mechanisms: (1) MarA activation of the marRAB, sodA, and micF promoters involves a net acceleration of the kinetics of transitions after RNA polymerase binding, up to and including promoter escape and message elongation; (2) RNA polymerase binds to these promoters with nearly unit occupancy in the absence of MarA, making recruitment of polymerase an insignificant factor in activation of these promoters; and (3) instead of recruitment, activation of the micF promoter might involve a repulsion of polymerase combined with a large acceleration of the kinetics of polymerase activity. These predictions are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. A lack of recruitment in transcriptional activation represents an exception to the textbook description of activation of bacterial sigma-70 promoters. However, use of accelerated polymerase kinetics instead of recruitment might confer a competitive advantage to E. coli by decreasing latency in gene regulation.
We have developed a mathematical model of regulation of expression of the Escherichia coli lac operon, and have investigated bistability in its steady-state induction behavior in the absence of external glucose. Numerical analysis of equations describing regulation by artificial inducers revealed two natural bistability parameters that can be used to control the range of inducer concentrations over which the model exhibits bistability. By tuning these bistability parameters, we found a family of biophysically reasonable systems that are consistent with an experimentally determined bistable region for induction by thio-methylgalactoside (Ozbudak et al. Nature 427:737, 2004). The model predicts that bistability can be abolished when passive transport or permease export becomes sufficiently large; the former case is especially relevant to induction by isopropyl-beta, D-thiogalactopyranoside. To model regulation by lactose, we developed similar equations in which allolactose, a metabolic intermediate in lactose metabolism and a natural inducer of lac, is the inducer. For biophysically reasonable parameter values, these equations yield no bistability in response to induction by lactose; however, systems with an unphysically small permease-dependent export effect can exhibit small amounts of bistability for limited ranges of parameter values. These results cast doubt on the relevance of bistability in the lac operon within the natural context of E. coli, and help shed light on the controversy among existing theoretical studies that address this issue. The results also suggest an experimental approach to address the relevance of bistability in the lac operon within the natural context of E. coli.
Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.
124 - E. Almaas , B. Kovacs , T. Vicsek 2004
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolisms activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا