Do you want to publish a course? Click here

Properties of highly frustrated magnetic molecules studied by the finite-temperature Lanczos method

112   0   0.0 ( 0 )
 Added by J. Schnack
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The very interesting magnetic properties of frustrated magnetic molecules are often hardly accessible due to the prohibitive size of the related Hilbert spaces. The finite-temperature Lanczos method is able to treat spin systems for Hilbert space sizes up to 10^9. Here we first demonstrate for exactly solvable systems that the method is indeed accurate. Then we discuss the thermal properties of one of the biggest magnetic molecules synthesized to date, the icosidodecahedron with antiferromagnetically coupled spins of s=1/2. We show how genuine quantum features such as the magnetization plateau behave as a function of temperature.



rate research

Read More

113 - J. Schnack , C. Heesing 2012
We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.
103 - O. Hanebaum , J. Schnack 2014
It is virtually impossible to evaluate the magnetic properties of large anisotropic magnetic molecules numerically exactly due to the huge Hilbert space dimensions as well as due to the absence of symmetries. Here we propose to advance the Finite-Temperature Lanczos Method (FTLM) to the case of single-ion anisotropy. The main obstacle, namely the loss of the spin rotational symmetry about the field axis, can be overcome by choosing symmetry related random vectors for the approximate evaluation of the partition function. We demonstrate that now thermodynamic functions for anisotropic magnetic molecules of unprecedented size can be evaluated.
116 - J. Schnack 2019
We study trace estimators for equilibrium thermodynamic observables that rely on the idea of typicality and derivatives thereof such as the finite-temperature Lanczos method (FTLM). As numerical examples quantum spin systems are studied. Our initial aim was to identify pathological examples or circumstances, such as strong frustration or unusual densities of states, where these methods could fail. Instead we failed with the attempt. All investigated systems allow such approximations, only at temperatures of the order of the lowest energy gap the convergence is somewhat slower in the number of random vectors over which observables are averaged.
We theoretically study finite temperature properties of interacting fermion systems under geometrical frustration in the charge degree of freedom. Physical quantities such as charge structure factors, the specific heat, and the entropy, of the two-dimensional model of interacting spinless fermions on an anisotropic triangular lattice are numerically calculated using the thermal pure quantum state. By considering the Coulomb interactions up to the next-nearest-neighbor bonds, we elucidate that in the highly frustrated region where a long-period stripe-type charge order (CO) is the ground state, fluctuations of different stripe-type CO patterns become large at finite temperatures. When we further introduce $1/r$-type long-range Coulomb interactions, the ground state unexpectedly recovers the non-stripe-type 3-fold CO pattern characteristic of triangular lattice models with short-range interactions. Our results imply that the BEDT-TTF-based organic conductors exhibiting glass-like behavior locates in the region of the intermediate strength of long-range interactions, where both the stripe- and non-stripe-type CO fluctuations are prominent.
416 - N. Qureshi , A. Wildes , C. Ritter 2021
We report the low-temperature properties of SrNd$_2$O$_4$, a geometrically frustrated magnet. Magnetisation and heat capacity measurements performed on polycrystalline samples indicate the appearance of a magnetically ordered state at $T_{rm N}=2.28(4)$~K. Powder neutron diffraction measurements reveal that an afm state with the propagation vector QV is stabilised below this temperature. The magnetic order is incomplete, as only one of the two Nd$^{3+}$ sites carries a significant magnetic moment while the other site remains largely disordered. The presence of a disordered magnetic component below $T_{rm N}$ is confirmed with polarised neutron diffraction measurements. In an applied magnetic field, the bulk properties measurements indicate a phase transition at about 30~kOe. We construct a tentative $H$-$T$ phase diagram of sno from these measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا