Do you want to publish a course? Click here

An Atomic Gravitational Wave Interferometric Sensor in Low Earth Orbit (AGIS-LEO)

154   0   0.0 ( 0 )
 Added by Jason Hogan
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated over a ~30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of < 10^(-18) / Hz^(1/2) in the 50 mHz - 10 Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline (< 100 m) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.



rate research

Read More

We propose a space-based gravitational wave detector consisting of two spatially separated, drag-free satellites sharing ultra-stable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective Doppler shifts induced by incident gravitational waves (GWs) at a level competitive with other proposed space-based GW detectors, while providing complementary features. The detected signal is a differential frequency shift of the shared laser light due to the relative velocity of the satellites, and the detection window can be tuned through the control sequence applied to the atoms internal states. This scheme enables the detection of GWs from continuous, spectrally narrow sources, such as compact binary inspirals, with frequencies ranging from ~3 mHz - 10 Hz without loss of sensitivity, thereby bridging the detection gap between space-based and terrestrial optical interferometric GW detectors. Our proposed GW detector employs just two satellites, is compatible with integration with an optical interferometric detector, and requires only realistic improvements to existing ground-based clock and laser technologies.
MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the worlds best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.
We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $Omega_text{GW} sim 10^{-14}$ for a two satellite space-based detector.
In 2015 the first observation of gravitational waves marked a breakthrough in astrophysics, and in technological research and development. The discovery of a gravitational-wave signal from the collision of two black holes, a billion light-years away, received considerable interest from the media and public. We describe the development of a purpose-built exhibit explaining this new area of research to a general audience. The core element of the exhibit is a working Michelson interferometer: a scaled-down version of the key technology used in gravitational-wave detectors. The Michelson interferometer is integrated into a hands-on exhibit, which allows for user interaction and simulated gravitational-wave observations. An interactive display provides a self-guided explanation of gravitational-wave-related topics through video, animation, images and text. We detail the hardware and software used to create the exhibit and discuss two installation variants: an independent learning experience in a museum setting (the Thinktank Birmingham Science Museum), and a science-festival with the presence of expert guides (the 2017 Royal Society Summer Science Exhibition). We assess audience reception in these two settings, describe the improvements we have made given this information, and discuss future public-engagement projects resulting from this work. The exhibit is found to be effective in communicating the new and unfamiliar field of gravitational-wave research to general audiences. An accompanying website provides parts lists and information for others to build their own version of this exhibit.
By precisely monitoring the ticks of Natures most precise clocks (millisecond pulsars), scientists are trying to detect the ripples in spacetime (gravitational waves) produced by the inspirals of supermassive black holes in the centers of distant merging galaxies. Here we describe a relatively simple demonstration that uses two metronomes and a microphone to illustrate several techniques used by pulsar astronomers to search for gravitational waves. An adapted version of this demonstration could be used as an instructional laboratory investigation at the undergraduate level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا