No Arabic abstract
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show how the superlattice can be employed to measure the singlet-fraction employing a spin blockade effect. Our method provides a reliable way to detect and control nearest-neighbor spin correlations in many-body systems of ultracold atoms. Being able to measure these correlations is an important ingredient to study quantum magnetism in optical lattices. We furthermore employ a SWAP operation between atoms being part of different triplets, thus effectively increasing their bond-length. Such SWAP operation provides an important step towards the massively parallel creation of a multi-particle entangled state in the lattice.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of $1.9^{+1.7}_{-0.4} times 10^{-3} k_{text{B}}$. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 $pm$ 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement
Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly-correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.
We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential we engineer spatially dependent complex tunneling amplitudes. Thereby atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of charged particles in a magnetic field. We determine the local distribution of fluxes through the observation of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments, our system naturally realizes the time-reversal symmetric Hamiltonian underlying the quantum spin Hall effect, i.e., two different spin components experience opposite directions of the magnetic field.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewed here, along with different applications to lattice potentials with two minima per unit cell, in one and two spatial dimensions. Two independent methods for computing the tight-binding coefficients - one ab initio, based on the maximally localized Wannier functions, the other through analytic expressions in terms of the energy spectrum - are considered. In the one dimensional case, where the tight-binding coefficients can be obtained by designing a specific gauge transformation, we consider both the case of quasi resonance between the two lowest bands, and that between s and p orbitals. In the latter case, the role of the Wannier functions in the derivation of an effective Dirac equation is also reviewed. Then, we consider the case of a two dimensional honeycomb potential, with particular emphasis on the Haldane model, its phase diagram, and the breakdown of the Peierls substitution. Tunable honeycomb lattices, characterized by movable Dirac points, are also considered. Finally, general considerations for dealing with the interaction terms are presented.