Do you want to publish a course? Click here

Characterizing the Variability of Stars with Early-Release Kepler Data

235   0   0.0 ( 0 )
 Added by David Ciardi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a variability analysis of the early-release first quarter of data publicly released by the Kepler project. Using the stellar parameters from the Kepler Input Catalog, we have separated the sample into 129,000 dwarfs and 17,000 giants, and further sub-divided the luminosity classes into temperature bins corresponding approximately to the spectral classes A, F, G, K, and M. Utilizing the inherent sampling and time baseline of the public dataset (30 minute sampling and 33.5 day baseline), we have explored the variability of the stellar sample. The overall variability rate of the dwarfs is 25% for the entire sample, but can reach 100% for the brightest groups of stars in the sample. G-dwarfs are found to be the most stable with a dispersion floor of $sigma sim 0.04$ mmag. At the precision of Kepler, $>95$% of the giant stars are variable with a noise floor of $sim 0.1$ mmag, 0.3 mmag, and 10 mmag for the G-giants, K-giants, and M-giants, respectively. The photometric dispersion of the giants is consistent with acoustic variations of the photosphere; the photometrically-derived predicted radial velocity distribution for the K-giants is in agreement with the measured radial velocity distribution. We have also briefly explored the variability fraction as a function of dataset baseline (1 - 33 days), at the native 30-minute sampling of the public Kepler data. To within the limitations of the data, we find that the overall variability fractions increase as the dataset baseline is increased from 1 day to 33 days, in particular for the most variable stars. The lower mass M-dwarf, K-dwarf, G-dwarf stars increase their variability more significantly than the higher mass F-dwarf and A-dwarf stars as the time-baseline is increased, indicating that the variability of the lower mass stars is mostly characterized by timescales of weeks whi...astroph will not allow longer abstract!



rate research

Read More

We present Korea Microlensing Telescope Network (KMTNet) light curves for microlensing-event candidates in the Kepler K2 C9 field having peaks within 3 effective timescales of the Kepler observations. These include 181 clear microlensing and 84 possible microlensing events found by the KMTNet event finder, plus 56 other events found by OGLE and/or MOA that were not found by KMTNet. All data for the first two classes are immediately available for public use without restriction.
118 - Subo Dong 2013
We use 12000 stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic data to show that the metallicities of Kepler field stars as given in the Kepler Input Catalog (KIC) systematically underestimate both the true metallicity and the dynamic range of the Kepler sample. Specifically, to the first order approximation, we find [Fe/H]_KIC = -0.20 + 0.43 [Fe/H]_LAMOST, with a scatter of ~0.25 dex, due almost entirely to errors in KIC. This relation is most secure for -0.3<[Fe/H]_LAMOST<+0.4 where we have >200 comparison stars per 0.1 dex bin and good consistency is shown between metallicities determined by LAMOST and high-resolution spectra. It remains approximately valid in a slightly broader range. When the relation is inverted, the error in true metallicity as derived from KIC is (0.25 dex)/0.43~0.6 dex. We thereby quantitatively confirm the cautionary note by Brown et al. (2011) that KIC estimates of [Fe/H] should not be used by anyone with a particular interest in stellar metallicities. Fortunately, many more LAMOST spectroscopic metallicities will be available in the near future.
We present exoplanet occurrence rates estimated with approximate Bayesian computation for planets with radii between 0.5 and 16 $R_{bigoplus}$ and orbital periods between 0.78 and 400 days, orbiting FGK dwarf stars. We base our results on an independent planet catalogue compiled from our search of all ~200,000 stars observed over the Kepler mission, with precise planetary radii supplemented by Gaia DR2-incorporated stellar radii. We take into account detection and vetting efficiency, planet radius uncertainty, and reliability against transit-like noise signals in the data. By analyzing our FGK occurrence rates as well as those computed after separating F-, G-, and K-type stars, we explore dependencies on stellar effective temperature, planet radius, and orbital period. We reveal new characteristics of the photoevaporation-driven radius gap between ~1.5 and 2 $R_{bigoplus}$, indicating that the bimodal distribution previously revealed for $P$ < 100 days exists only over a much narrower range of orbital periods, above which sub-Neptunes dominate and below which super-Earths dominate. Finally, we provide several estimates of the eta-Earth value -- the frequency of potentially habitable, rocky planets orbiting Sun-like stars. For planets with sizes 0.75 - 1.5 $R_{bigoplus}$ orbiting in a conservatively defined habitable zone (0.99 - 1.70 AU) around G-type stars, we place an upper limit (84.1th percentile) of <0.18 planets per star.
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define $eta_oplus$ as the HZ occurrence of planets with radius between 0.5 and 1.5 $R_oplus$ orbiting stars with effective temperatures between 4800 K and 6300 K. We find that $eta_oplus$ for the conservative HZ is between $0.37^{+0.48}_{-0.21}$ (errors reflect 68% credible intervals) and $0.60^{+0.90}_{-0.36}$ planets per star, while the optimistic HZ occurrence is between $0.58^{+0.73}_{-0.33}$ and $0.88^{+1.28}_{-0.51}$ planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with $95%$ confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.
We produce a clean and well-characterised catalogue of objects within 100,pc of the Sun from the G Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use. The selection of objects within 100,pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100,pc is included in the catalogue. We have produced a catalogue of NFINAL objects that we estimate contains at least 92% of stars of stellar type M9 within 100,pc of the Sun. We estimate that 9% of the stars in this catalogue probably lie outside 100,pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of G Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10,pc of the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا