No Arabic abstract
We aim to study the properties of the dense molecular gas towards the inner few 100 pc of four nearby starburst galaxies dominated both by photo dissociation regions (M82) and large-scale shocks (NGC253, IC342 and Maffei2), and to relate the chemical and physical properties of the molecular clouds with the evolutionary stage of the nuclear starbursts. We have carried out multi-transitional observations and analyses of three dense gas molecular tracers, CS, HC3N and CH3CCH, using Boltzmann diagrams in order to determine the rotational temperatures and column densities of the dense gas, and using a Large Velocity Gradients model to calculate the H2 density structure in the molecular clouds. The CS and HC3N data indicate the presence of density gradients in the molecular clouds, showing similar excitation conditions, and suggesting that they arise from the same gas components. In M82, CH3CCH has the highest fractional abundance determined in a extragalactic source (10^-8). The density and the chemical gradients found in all galaxies can be explained in the framework of the starburst evolution. The young shock-dominatedstarburst galaxies, like presumably Maffei2, show a cloud structure with a rather uniform density and chemical composition which suggests low star formation activity. Molecular clouds in galaxies with starburst in an intermediate stage of evolution, such as NGC253 and IC342, show clouds with a large density contrast (two orders of magnitude) between the denser regions (cores) and the less dense regions (halos) of the molecular clouds and relatively constant chemical abundance. Finally, the galaxy with the most evolved starburst, M82, has clouds with a rather uniform density structure, large envelopes of atomic/molecular gas subjected to UV photodissociating radiation from young star clusters, and very different chemical abundances of HC3N and CH3CCH.
We have conducted a high-resolution ``3D imaging survey of the CO(1--0), HCN(1--0), and HCO$^+$(1--0) lines toward the central a few kpc regions of the Seyfert and starburst galaxies in the local universe using the Nobeyama Millimeter Array. We detected luminous HCN(1--0) emissions toward a considerable fraction of these Seyfert galaxies (10 of 12 in our sub-sample), which indicated that some of these Seyfert galaxies, such as NGC 3079, NGC 3227, NGC 4051, NGC 6764, and NGC 7479, are indeed accompanied with compact nuclear starburst, given the tight correlation between the HCN(1--0) luminosity and the star formation rate among star-forming galaxies. However, we suggest that the elevated HCN(1--0) emission from some of these Seyfert galaxies, including NGC 1068, NGC 1097, NGC 5033, and NGC 5194, does not signify the presence of massive starbursts there. This is because these Seyfert nuclei show abnormally high HCN(1--0)/HCO$^+$(1--0) ratios (2--3), which were never observed in the starburst nuclei in our sample. This could be attributed to the overabundance of HCN molecules in the X-ray dominated regions (XDRs) at the centers of these Seyfert galaxies.
We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to resolve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individual stars with stellar isochrones. Additionally, we select a very young (<10 Myr) population of OB stars for a subset of the galaxies based on the tip of the young main-sequence. By selecting stars in different age ranges we can then study how the spatial distribution of these stars evolves with time. We find, in agreement with previous studies, that stars are born within galaxies with a high degree of substructure which is made up of a continuous distribution of clusters, groups and associations from parsec to hundreds of parsec scales. These structures disperse on timescales of tens to hundreds of Myr, which we quantify using the two-point correlation function and the Q-parameter developed by Cartwright & Whitworth (2004). On galactic scales, we can place lower limits on the time it takes to remove the original structure (i.e., structure survives for at least this long), tevo, which varies between ~100~Myr (NGC~2366) and ~350 Myr (DDO~165). This is similar to what we have found previously for the SMC (~80~Myr) and the LMC (~175 Myr). We do not find any strong correlations between tevo and the luminosity of the host galaxy.
We present a study of reddening and absorption towards the Narrow Line Regions (NLR) in active galactic nuclei (AGN) selected from the Revised Shapley-Ames, 12mu, and Swift/Burst Alert Telescope samples. For the sources in host galaxies with inclinations of b/a > 0.5, we find that mean ratio of [O III] 5007A, from ground-based observations, and [O IV] 28.59mu, from Spitzer/Infrared Spectrograph observations, is a factor of 2 lower in Seyfert 2s than Seyfert 1s. The combination of low [O III]/[O IV] and [O III] 4363/5007 ratios in Seyfert 2s suggests more extinction of emission from the NLR than in Seyfert 1s. Similar column densities of dusty gas, NH ~ several X 10^21 cm^-2, can account for the suppression of both [O III] 5007A and [O III] 4363A, as compared to those observed in Seyfert 1s. Also, we find that the X-ray line OVII 22.1A is weaker in Seyfert 2s, consistent with absorption by the same gas that reddens the optical emission. Using a Hubble Space Telescope/Space Telescope Imaging Spectrograph slitless spectrum of the Seyfert 1 galaxy NGC 4151, we estimate that only ~ 30% of the [O III] 5007A comes from within 30 pc of the central source, which is insufficient to account for the low [O III]/[OIV] ratios in Seyfert 2s. If Seyfert 2 galaxies have similar intrinsic [OIII] spatial profiles, the external dusty gas must extend further out along the NLR, perhaps in the form of nuclear dust spirals that have been associated with fueling flows towards the AGN.
We present the first AGN census in a sample of 61 galaxies selected at 70microns, a wavelength which should strongly favour the detection of star-forming systems. For the purpose of this study we take advantage of deep Chandra X-ray and Spitzer infrared (3.6-160micron) data, as well as optical spectroscopy and photometry from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey for the Extended Groth Strip (EGS) field. We investigate spectral line diagnostics ([OIII]/Hbeta and [NeIII]/[OII] ratios, Hdelta Balmer absorption line equivalent widths and the strength of the 4000Ang break), X-ray luminosities and spectral energy distributions (SEDs). We find that the 70micron sources are undergoing starburst episodes and are therefore characterised by a predominance of young stars. In addition, 13 per cent of the sources show AGN signatures and hence potentially host an AGN. When the sample is split into starbursts (SBs, 10^10<L_IR<10^11 L_solar), Luminous InfraRed Galaxies (LIRGs, 10^11<L_IR<10^12 L_solar) and UltraLuminous InfraRed Galaxies (ULIRGs,10^12<L_IR<10^13 L_solar), the AGN fraction becomes 0, 11 and 23 per cent respectively, showing an increase with total infrared luminosity. However, by examining the sources panchromatic SEDs, we conclude that although the AGN is energetically important in 1 out of 61 objects, all 70micron-selected galaxies are primarily powered by star-formation.
There is a consensus in the literature that starburst galaxies are triggered by inter- action events. However, it remains an open question as to what extent both merging and non-merging interactions have in triggering starbursts? In this study, we make use of the Illustris simulation to test how different triggering mechanisms can effect starburst events. We examine star formation rate, colour and environment of starburst galaxies to determine if this could be why we witness a bimodality in post-starburst populations within observational studies. Further, we briefly test the extent of quenching due to AGN feedback. From Illustris, we select 196 starburst galaxies at z = 0.15 and split them into post-merger and pre-merger/harassment driven starburst samples. We find that 55% of this sample not undergone a merger in the past 2 Gyr. Both of our samples are located in low-density environments within the filament regions of the cosmic web, however we find that pre-merger/harassment driven starburst are in higher density environments than post-merger driven starbursts. We also find that pre-merger/harassment starbursts are redder than post-merger starbursts, this could be driven by environmental effects. Both however, produce nuclear starbursts of comparable strengths.