Do you want to publish a course? Click here

Weyl groups of fine gradings on matrix algebras, octonions and the Albert algebra

131   0   0.0 ( 0 )
 Added by Mikhail Kotchetov
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Given a grading $Gamma: A=oplus_{gin G}A_g$ on a nonassociative algebra $A$ by an abelian group $G$, we have two subgroups of the group of automorphisms of $A$: the automorphisms that stabilize each homogeneous component $A_g$ (as a subspace) and the automorphisms that permute the components. By the Weyl group of $Gamma$ we mean the quotient of the latter subgroup by the former. In the case of a Cartan decomposition of a semisimple complex Lie algebra, this is the automorphism group of the root system, i.e., the so-called extended Weyl group. A grading is called fine if it cannot be refined. We compute the Weyl groups of all fine gradings on matrix algebras, octonions and the Albert algebra over an algebraically closed field (of characteristic different from 2 in the case of the Albert algebra).



rate research

Read More

Known classification results allow us to find the number of (equivalence classes of) fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field $mathbb{F}$ (assuming $mathrm{char} mathbb{F} e 2$ in the Lie case). The computation is easy for matrix algebras and especially for simple Lie algebras of type $B_r$ (the answer is just $r+1$), but involves counting orbits of certain finite groups in the case of Series $A$, $C$ and $D$. For $Xin{A,C,D}$, we determine the exact number of fine gradings, $N_X(r)$, on the simple Lie algebras of type $X_r$ with $rle 100$ as well as the asymptotic behaviour of the average, $hat N_X(r)$, for large $r$. In particular, we prove that there exist positive constants $b$ and $c$ such that $exp(br^{2/3})lehat N_X(r)leexp(cr^{2/3})$. The analogous average for matrix algebras $M_n(mathbb{F})$ is proved to be $aln n+O(1)$ where $a$ is an explicit constant depending on $mathrm{char} mathbb{F}$.
137 - Wenjuan Xie , Wende Liu 2018
In this paper we define the so-called twisted Heisenberg superalgebras over the complex number field by adding derivations to Heisenberg superalgebras. We classify the fine gradings up to equivalence on twisted Heisenberg superalgebras and determine the Weyl groups of those gradings.
We prove simplicity, and compute $delta$-derivations and symmetric associative forms of algebras in the title.
208 - Eli Aljadeff , Ofir David 2014
We show that there exists a constant K such that for any PI- algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with $[G : U] leq exp(W)^K$. A G-grading $W = bigoplus_{g in G}W_g$ is said to be nondegenerate if $W_{g_1}W_{g_2}... W_{g_r} eq 0$ for any $r geq 1$ and any $r$ tuple $(g_1, g_2,..., g_r)$ in $G^r$.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا