Anisotropy of Alfvenic Turbulence in the Solar Wind and Numerical Simulations


Abstract in English

We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure functions in both data sets. In the solar wind, the perpendicular spectral index of the magnetic field is close to -5/3. In the forced simulation, it is close to -5/3 for the velocity and -3/2 for the magnetic field. In the decaying simulation, it is -5/3 for both fields. The spectral index becomes steeper at small angles to the local magnetic field direction in all cases. We also show that when using the global rather than local mean field, the anisotropic scaling of the simulations cannot always be properly measured.

Download