Do you want to publish a course? Click here

Iterative solution of a Dirac equation with inverse Hamiltonian method

136   0   0.0 ( 0 )
 Added by Kouichi Hagino
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We solve a singe-particle Dirac equation with Woods-Saxon potentials using an iterative method in the coordinate space representation. By maximizing the expectation value of the inverse of the Dirac Hamiltonian, this method avoids the variational collapse, in which an iterative solution dives into the Dirac sea. We demonstrate that this method works efficiently, reproducing the exact solutions of the Dirac equation.



rate research

Read More

114 - Z.X. Ren , S.Q. Zhang , J. Meng 2016
A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single particle energy are smaller than $10^{-4}$~MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial deformed, non-axial deformed, and octupole deformed potential are provided and discussed.
117 - B. Li , Z. X. Ren , P. W. Zhao 2020
An efficient method, preconditioned conjugate gradient method with a filtering function (PCG-F), is proposed for solving iteratively the Dirac equation in 3D lattice space for nuclear systems. The filtering function is adopted to avoid the variational collapsed problem and a momentum-dependent preconditioner is introduced to promote the efficiency of the iteration. The PCG-F method is demonstrated in solving the Dirac equation with given spherical and deformed Woods-Saxon potentials. The solutions given by the inverse Hamiltonian method in 3D lattice space and the shooting method in radial coordinate space are reproduced with a high accuracy. In comparison with the existing inverse Hamiltonian method, the present PCG-F method is much faster in the convergence of the iteration, in particular for deformed potentials. It may also provide a promising way to solve the relativistic Hartree-Bogoliubov equation iteratively in the future.
157 - Y. Tanimura , K. Hagino , 2013
We solve the Hartree-Fock-Bogoliubov (HFB) equations for a spherical mean field and a pairing potential with the inverse Hamiltonian method, which we have developed for the solution of the Dirac equation. This method is based on the variational principle for the inverse Hamiltonian, and is applicable to Hamiltonians that are bound neither from above nor below. We demonstrate that the method works well not only for the Dirac but also for the HFB equations.
111 - Zhi Fang , Min Shi , Jian-You Guo 2016
Resonance plays critical roles in the formation of many physical phenomena, and many techniques have been developed for the exploration of resonance. In a recent letter [Phys. Rev. Lett. 117, 062502 (2016)], we proposed a new method for probing single-particle resonances by solving the Dirac equation in complex momentum representation for spherical nuclei. Here, we extend this method to deformed nuclei with theoretical formalism presented. We elaborate numerical details, and calculate the bound and resonant states in $^{37}$Mg. The results are compared with those from the coordinate representation calculations with a satisfactory agreement. In particular, the present method can expose clearly the resonant states in complex momentum plane and determine precisely the resonance parameters for not only narrow resonances but also broad resonances that were difficult to obtain before.
We consider Yukawa theory in which the fermion mass is induced by a Higgs like scalar. In our model the fermion mass exhibits a temporal dependence, which naturally occurs in the early Universe setting. Assuming that the complex fermion mass changes as a tanh-kink, we construct an exact, helicity conserving, CP-violating solution for the positive and negative frequency fermionic mode functions, which is valid both in the case of weak and strong CP violation. Using this solution we then study the fermionic currents both in the initial vacuum and finite density/temperature setting. Our result shows that, due to a potentially large state squeezing, fermionic currents can exhibit a large oscillatory magnification. Having in mind applications to electroweak baryogenesis, we then compare our exact results with those obtained in a gradient approximation. Even though the gradient approximation does not capture the oscillatory effects of squeezing, it describes quite well the averaged current, obtained by performing a mode sum. Our main conclusion is: while the agreement with the semiclassical force is quite good in the thick wall regime, the difference is sufficiently significant to motivate a more detailed quantitative study of baryogenesis sources in the thin wall regime in more realistic settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا