Do you want to publish a course? Click here

Systematically convergent method for accurate total energy calculations with localized atomic orbitals

234   0   0.0 ( 0 )
 Added by Sam Azadi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method for solving a self consistent electronic calculation within localized atomic orbitals, that allows us to converge to the complete basis set (CBS) limit in a stable, controlled, and systematic way. We compare our results with the ones obtained with a standard quantum chemistry package for the simple benzene molecule. We find perfect agreement for small basis set and show that, within our scheme, it is possible to work with a very large basis in an efficient and stable way. Therefore we can avoid to introduce any extrapolation to reach the CBS limit. In our study we have also carried out variational Monte Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC) with a standard many-body wave function (WF) defined by the product of a Slater determinant and a Jastrow factor. Once the Jastrow factor is optimized by keeping fixed the Slater determinant provided by our new scheme, we obtain a very good description of the atomization energy of the benzene molecule only when the basis of atomic orbitals is large enough and close to the CBS limit, yielding the lowest variational energies.



rate research

Read More

We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wave function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.
126 - A. Badinski , R. J. Needs 2008
We report exact expressions for atomic forces in the diffusion Monte Carlo (DMC) method when using nonlocal pseudopotentials. We present approximate schemes for estimating these expressions in both mixed and pure DMC calculations, including the pseudopotential Pulay term which has not previously been calculated and the Pulay nodal term which has not been calculated for real systems in pure DMC simulations. Harmonic vibrational frequencies and equilibrium bond lengths are derived from the DMC forces and compared with those obtained from DMC potential energy curves. Results for four small molecules show that the equilibrium bond lengths obtained from our best force and energy calculations differ by less than 0.002 Angstrom.
We formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+U method. Our derivation provides a theoretical justification for adding a DFT+U-like onsite potential in hybrid DFT calculations to resolve issues caused by overscreening of localized states. The resulting scheme, hybrid- DFT+Vw, is tested for chromium impurity in wurtzite AlN and vanadium impurity in 4H-SiC, which are paradigm examples of systems with different degree of localization between host and impurity orbitals.
We derive an automatic procedure for generating a set of highly localized, non-orthogonal orbitals for linear scaling quantum Monte Carlo calculations. We demonstrate the advantage of these orbitals in calculations of the total energy of both semiconducting and metallic systems by studying bulk silicon and the homogeneous electron gas. For silicon, the improved localization of these orbitals reduces the computational time by a factor five and the memory by a factor of six compared to localized, orthogonal orbitals. For jellium, we demonstrate that the total energy is converged for orbitals truncated within spheres with radii 7-8 $r_s$, opening the possibility of linear scaling QMC calculations for realistic metallic systems.
150 - Peize Lin , Xinguo Ren , 2020
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the localized resolution of the identity approximation by which two-electron Coulomb repulsion integrals can be obtained by only computing two-center quantities -- a feature that is highly beneficial to NAOs. By exploiting the locality of basis functions and efficient prescreening of the intermediate three- and two-index tensors, one can achieve a linear scaling of the computational cost for building the HFX matrix with respect to the system size. Our implementation is massively parallel, thanks to a MPI/OpenMP hybrid parallelization strategy for distributing the computational load and memory storage. All these factors add together to enable highly efficient hybrid functional calculations for large-scale periodic systems. In this work we describe the key algorithms and implementation details for the HFX build as implemented in the ABACUS code package. The performance and scalability of our implementation with respect to the system size and the number of CPU cores are demonstrated for selected benchmark systems up to 4096 atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا