Do you want to publish a course? Click here

Escaping stars from young low-N clusters

114   0   0.0 ( 0 )
 Added by Carsten Weidner
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the use of N-body calculations the amount and properties of escaping stars from low-N (N = 100 and 1000) young embedded star clusters prior to gas expulsion are studied over the first 5 Myr of their existence. Besides the number of stars also different initial radii and binary populations are examined as well as virialised and collapsing clusters. It is found that these clusters can loose substantial amounts (up to 20%) of stars within 5 Myr with considerable velocities up to more than 100 km/s. Even with their mean velocities between 2 and 8 km/s these stars will still be travelling between 2 and 30 pc during the 5 Myr. Therefore can large amounts of distributed stars in star-forming regions not necessarily be counted as evidence for the isolated formation of stars.



rate research

Read More

61 - T.P. Ray , J. Ferreira 2020
Jets are ubiquitous in the Universe and, as demonstrated in this volume, are seen from a large number of astrophysical objects. For a number of reasons, in particular their proximity and the abundant range of diagnostics to determine their characteristics, jets from young stars and their associated outflows may offer us the best opportunity to discover how jets are generated in general and the nature of the link between outflows and their accretion disks. Recently it has become clear that jets may be fundamental to the star formation process in removing angular momentum from the surrounding protoplanetary disk thereby allowing accretion to proceed. Moreover, with the realisation that planetary formation begins much earlier than previously thought, jets may also help forge planets by determining initial environmental characteristics. This seems to be particularly true within the so-called terrestrial planet forming zone. Here we review observations of jets from young stars which have greatly benefitted from new facilities such as ALMA, space observatories like Spitzer, Herschel and HST, and radio facilities like LOFAR and the VLA. Interferometers such as CHARA and GRAVITY are starting to make inroads into resolving how they are launched, and we can look forward to a bright future in our understanding of this phenomenon when JWST and the SKA come on stream. In addition, we examine the various magnetohydrodynamic models for how jets from young stars are thought to be generated and how observations may help us select between these various options.
We compute rotating 1D stellar evolution models that include a modified temperature gradient in convection zones and criterion for convective instability inspired by rotating 3D hydrodynamical simulations performed with the MUSIC code. In those 3D simulations we found that convective properties strongly depend on the Solberg-H{o}iland criterion for stability. We therefore incorporated this into 1D stellar evolution models by replacing the usual Schwarzschild criterion for stability and also modifying the temperature gradient in convection zones. We computed a grid of 1D models between 0.55 and 1.2 stellar masses from the pre-main sequence to the end of main sequence in order to study the problem of lithium depletion in low-mass main sequence stars. This is an ideal test case because many of those stars are born as fast rotators and the rate of lithium depletion is very sensitive to the changes in the stellar structure. Additionally, observations show a correlation between slow rotation and lithium depletion, contrary to expectations from standard models of rotationally driven mixing. By suppressing convection, and therefore decreasing the temperature at the base of the convective envelope, lithium burning is strongly quenched in our rapidly rotating models to an extent sufficient to account for the lithium spread observed in young open clusters.
202 - Valentina DOrazi 2009
We report the discovery of a trend of increasing barium abundance with decreasing age for a large sample of Galactic open clusters. The observed pattern of [Ba/Fe] vs. age can be reproduced with a Galactic chemical evolution model only assuming a higher Ba yield from the $s$-process in low-mass stars than the average one suggested by parametrized models of neutron-capture nucleosynthesis. We show that this is possible in a scenario where the efficiency of the extra-mixing processes producing the neutron source $^{13}$C is anti-correlated with the initial mass, with a larger efficiency for lower masses. This is similar to the known trend of extended mixing episodes acting in H-rich layers and might suggest a common physical mechanism.
The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the impact of these often harsh environments on the evolution of their stellar and substellar members. We demonstrate the vital role numerical simulations play to uncover both key issues. Using dynamical models of different star cluster environments we show the variety of effects stellar interactions potentially have. Moreover, our significantly improved measure of mass segregation reveals that it can occur rapidly even for star clusters without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions.
519 - E.T. Whelan 2014
The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in several different forms and on many scales. Thus outflow activity can be probed in numerous different regimes from radio to X-ray wavelengths. Recent discoveries have shown that it is not only solar mass stars that launch outflows during their formation but also the sub-stellar brown dwarfs. In this article what is currently known about jets from young stars is summarised, including an outline of why it is important to study jets. The second part of this article is dedicated to jets from young brown dwarfs. While only a small number of brown dwarf outflows have been investigated to date, interesting properties have been observed. Here observations of brown dwarf outflows are described and what is currently known of their properties compared to low mass protostellar outflows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا