No Arabic abstract
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 microarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the self phase referencing (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.
The sensitivity and astrometry upgrade ASTRA of the Keck Interferometer is introduced. After a brief overview of the underlying interferometric principles, the technology and concepts of the upgrade are presented. The interferometric dual-field technology of ASTRA will provide the KI with the means to observe two objects simultaneously, and measure the distance between them with a precision eventually better than 100 uas. This astrometric functionality of ASTRA will add a unique observing tool to fields of astrophysical research as diverse as exo-planetary kinematics, binary astrometry, and the investigation of stars accelerated by the massive black hole in the center of the Milky Way as discussed in this contribution.
ASTRA (ASTrometric and phase-Referencing Astronomy) is an upgrade to the existing Keck Interferometer which aims at providing new self-phase referencing (high spectral resolution observation of YSOs), dual-field phase referencing (sensitive AGN observations), and astrometric (known exoplanetary systems characterization and galactic center general relativity in strong field regime) capabilities. With the first high spectral resolution mode now offered to the community, this contribution focuses on the progress of the dual field and astrometric modes.
We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.
We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10-meter Keck telescopes. The instrument and system components are briefly described. We then present observations of the T Tauri object DG Tau, which is resolved by the interferometer. The resolved component has a radius of 0.12 to 0.24 AU, depending on the assumed stellar and extended component fluxes and the model geometry used. Possible origins and implications of the resolved emission are discussed.
The proposed US Extremely Large Telescope (ELT) Program would secure national open access to at least 25% of the observing time on the Thirty Meter Telescope in the north and the Giant Magellan Telescope in the south. ELTs would advance solar system science via exceptional angular resolution, sensitivity, and advanced instrumentation. ELT contributions would include the study of interstellar objects, giant planet systems and ocean worlds, the formation of the solar system traced through small objects in the asteroid and Kuiper belts, and the active support of planetary missions. We recommend that (1) the US ELT Program be listed as critical infrastructure for solar system science, that (2) some support from NASA be provided to ensure mission support capabilities, and that (3) the US ELT Program expand solar-system community participation in development, planning, and operations.