No Arabic abstract
This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.
The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06pm0.05)times10^4$ cm$^{-2}$ normalized with $4times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected based on hadron production data.
Muon beam monitoring is indispensable for indirectly monitoring accelerator-produced neutrino beams in real time. Though Si photodiodes and ionization chambers have been successfully used as muon monitors at the T2K experiment, sensors that are more radiation tolerant are desired for future operation. We have investigated the electron-multiplier tube (EMT) as a new sensor for muon monitoring. Secondary electrons produced by the passage of muons at dynodes are multiplied in the tube and produce signal. Two prototype detectors were installed at the T2K muon monitor location, and various EMT properties were studied based on in situ data taken with the T2K muon beam. The signal size is as expected based on calculation, and the EMTs show a sufficiently fast time response for bunch-by-bunch beam monitoring. The spill-by-spill intensity resolution is 0.4%, better than the required value (1%). Signal linearity within $pm$1% is achieved at proton beam powers up to 460 kW (with +250 kA focusing horn operation). A gradual signal decrease was observed during the initial exposure, due to the stabilization of dynode materials, before the response became stable within $pm$1%. This work demonstrates that EMTs are a good candidate for future muon monitoring at T2K, and may also have other more general applications.
The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {theta}_{13} by observing { u}_e appearance in a { u}_{mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {Delta}m^{2}_{23} and sin^{2} 2{theta}_{23}, via { u}_{mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
In the T2K near neutrino detectors, about 60 000 Hamamatsu Multi-Pixel Photon Counters (MPPCs) will be used. The mass production of MPPC has started in February 2008.In order to perform quality assurance and to characterize each device, we have developed an MPPC test system. For each MPPC, gain, breakdown voltage, noise rate, photo detection efficiency, and cross-talk and after-pulse rate are measured as functions of the bias voltage and temperature. The design of the test system and the measurement procedure are described.
The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this article, we report the design, hardware, operation, and performance of the slow control system.