No Arabic abstract
We model the spreading of a crisis by constructing a global economic network and applying the Susceptible-Infected-Recovered (SIR) epidemic model with a variable probability of infection. The probability of infection depends on the strength of economic relations between the pair of countries, and the strength of the target country. It is expected that a crisis which originates in a large country, such as the USA, has the potential to spread globally, like the recent crisis. Surprisingly we show that also countries with much lower GDP, such as Belgium, are able to initiate a global crisis. Using the {it k}-shell decomposition method to quantify the spreading power (of a node), we obtain a measure of ``centrality as a spreader of each country in the economic network. We thus rank the different countries according to the shell they belong to, and find the 12 most central countries. These countries are the most likely to spread a crisis globally. Of these 12 only six are large economies, while the other six are medium/small ones, a result that could not have been otherwise anticipated. Furthermore, we use our model to predict the crisis spreading potential of countries belonging to different shells according to the crisis magnitude.
In this paper we present an empirical study of the worldwide maritime transportation network (WMN) in which the nodes are ports and links are container liners connecting the ports. Using the different representation of network topology namely the space $L$ and $P$, we study the statistical properties of WMN including degree distribution, degree correlations, weight distribution, strength distribution, average shortest path length, line length distribution and centrality measures. We find that WMN is a small-world network with power law behavior. Important nodes are identified based on different centrality measures. Through analyzing weighted cluster coefficient and weighted average nearest neighbors degree, we reveal the hierarchy structure and rich-club phenomenon in the network.
The shape of urban settlements plays a fundamental role in their sustainable planning. Properly defining the boundaries of cities is challenging and remains an open problem in the Science of Cities. Here, we propose a worldwide model to define urban settlements beyond their administrative boundaries through a bottom-up approach that takes into account geographical biases intrinsically associated with most societies around the world, and reflected in their different regional growing dynamics. The generality of the model allows to study the scaling laws of cities at all geographical levels: countries, continents, and the entire world. Our definition of cities is robust and holds to one of the most famous results in Social Sciences: Zipfs law. According to our results, the largest cities in the world are not in line with what was recently reported by the United Nations. For example, we find that the largest city in the world is an agglomeration of several small settlements close to each other, connecting three large settlements: Alexandria, Cairo, and Luxor. Our definition of cities opens the doors to the study of the economy of cities in a systematic way independently of arbitrary definitions that employ administrative boundaries.
Conventional economic analysis of stringent climate change mitigation policy generally concludes various levels of economic slowdown as a result of substantial spending on low carbon technology. Equilibrium economics however could not explain or predict the current economic crisis, which is of financial nature. Meanwhile the economic impacts of climate policy find their source through investments for the diffusion of environmental innovations, in parts a financial problem. Here, we expose how results of economic analysis of climate change mitigation policy depend entirely on assumptions and theory concerning the finance of the diffusion of innovations, and that in many cases, results are simply re-iterations of model assumptions. We show that, while equilibrium economics always predict economic slowdown, methods using non-equilibrium approaches suggest the opposite could occur. We show that the solution to understanding the economic impacts of reducing greenhouse gas emissions lies with research on the dynamics of the financial sector interacting with innovation and technology developments, economic history providing powerful insights through important analogies with previous historical waves of innovation.
Viral videos can reach global penetration traveling through international channels of communication similarly to real diseases starting from a well-localized source. In past centuries, disease fronts propagated in a concentric spatial fashion from the the source of the outbreak via the short range human contact network. The emergence of long-distance air-travel changed these ancient patterns. However, recently, Brockmann and Helbing have shown that concentric propagation waves can be reinstated if propagation time and distance is measured in the flight-time and travel volume weighted underlying air-travel network. Here, we adopt this method for the analysis of viral meme propagation in Twitter messages, and define a similar weighted network distance in the communication network connecting countries and states of the World. We recover a wave-like behavior on average and assess the randomizing effect of non-locality of spreading. We show that similar result can be recovered from Google Trends data as well.
Urbanization plays a crucial role in the economic development of every country. The mutual relationship between the urbanization of any country and its economic productive structure is far from being understood. We analyzed the historical evolution of product exports for all countries using the World Trade Web (WTW) with respect to patterns of urbanization from 1995-2010. Using the evolving framework of economic complexity, we reveal that a countrys economic development in terms of its production and export of goods, is interwoven with the urbanization process during the early stages of its economic development and growth. Meanwhile in urbanized countries, the reciprocal relation between economic growth and urbanization fades away with respect to its later stages, becoming negligible for countries highly dependent on the export of resources where urbanization is not linked to any structural economic transformation.