Statistics of resonance states in a weakly open chaotic cavity


Abstract in English

In this letter, we demonstrate that a non-Hermitian Random Matrix description can account for both spectral and spatial statistics of resonance states in a weakly open chaotic wave system with continuously distributed losses. More specifically, the statistics of resonance states in an open 2D chaotic microwave cavity are investigated by solving the Maxwell equations with lossy boundaries subject to Ohmic dissipation. We successfully compare the statistics of its complex-valued resonance states and associated widths with analytical predictions based on a non-Hermitian effective Hamiltonian model defined by a finite number of fictitious open channels.

Download