Using a model of force balance in Saturns disk-like magnetosphere, we show that variations in hot plasma pressure can change the magnetic field configuration. This effect changes (i) the location of the magnetopause, even at fixed solar wind dynamic pressure, and (ii) the magnetic mapping between ionosphere and disk. The model uses equatorial observations as a boundary condition-we test its predictions over a wide latitude range by comparison with a Cassini high-inclination orbit of magnetic field and hot plasma pressure data. We find reasonable agreement over time scales larger than the period of Saturn kilometric radiation (also known as the camshaft period).