Do you want to publish a course? Click here

Overview of EXIST mission science and implementation

93   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Energetic X-ray Imaging Survey Telescope (EXIST) is designed to i) use the birth of stellar mass black holes, as revealed by cosmic Gamma-Ray Bursts (GRBs), as probes of the very first stars and galaxies to exist in the Universe. Both their extreme luminosity (~104 times larger than the most luminous quasars) and their hard X-ray detectability over the full sky with wide-field imaging make them ideal back-lights to measure cosmic structure with X-ray, optical and near-IR (nIR) spectra over many sight lines to high redshift. The full-sky imaging detection and rapid followup narrow-field imaging and spectroscopy allow two additional primary science objectives: ii) novel surveys of supermassive black holes (SMBHs) accreting as very luminous but rare quasars, which can trace the birth and growth of the first SMBHs as well as quiescent SMBHs (non-accreting) which reveal their presence by X-ray flares from the tidal disruption of passing field stars; and iii) a multiwavelength Time Domain Astrophysics (TDA) survey to measure the temporal variability and physics of a wide range of objects, from birth to death of stars and from the thermal to non-thermal Universe. These science objectives are achieved with the telescopes and mission as proposed for EXIST described here.



rate research

Read More

Solar Orbiter, the first mission of ESAs Cosmic Vision 2015-2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard. The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives. Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the missions science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories.
288 - Lennart Lindegren 2011
The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global solution approach which must also include a large number of parameters for the satellite attitude and optical instrument. The accurate and efficient implementation of this solution is an extremely demanding task, but crucial for the outcome of the mission. We provide a comprehensive overview of the mathematical and physical models applicable to this solution, as well as its numerical and algorithmic framework. The astrometric core solution is a simultaneous least-squares estimation of about half a billion parameters, including the astrometric parameters for some 100 million well-behaved so-called primary sources. The global nature of the solution requires an iterative approach, which can be broken down into a small number of distinct processing blocks (source, attitude, calibration and global updating) and auxiliary processes (including the frame rotator and selection of primary sources). We describe each of these processes in some detail, formulate the underlying models, from which the observation equations are derived, and outline the adopted numerical solution methods with due consideration of robustness and the structure of the resulting system of equations. Appendices provide brief introductions to some important mathematical tools (quaternions and B-splines for the attitude representation, and a modified Cholesky algorithm for positive semidefinite problems) and discuss some complications expected in the real mission data.
133 - P. Rosati , S. Borgani , R. Gilli 2010
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical, IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5 (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
58 - J.E. Grindlay 2002
The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed very large area coded aperture telescope array, incorporating 8m^2 of pixellated Cd-Zn-Te (CZT) detectors, to conduct a full-sky imaging and temporal hard x-ray (10-600 keV) survey each 95min orbit. With a sensitivity (5sigma, 1yr) of ~0.05mCrab (10-150 keV), it will extend the ROSAT soft x-ray (0.5-2.5keV) and proposed ROSITA medium x-ray (2-10 keV) surveys into the hard x-ray band and enable identification and study of sources ~10-20X fainter than with the ~15-100keV survey planned for the upcoming Swift mission. At ~100-600 keV, the ~1mCrab sensitivity is 300X that achieved in the only previous (HEAO-A4, non-imaging) all-sky survey. EXIST will address a broad range of key science objectives: from obscured AGN and surveys for black holes on all scales, which constrain the accretion history of the universe, to the highest sensitivity and resolution studies of gamma-ray bursts it will conduct as the Next Generation Gamma-Ray Burst mission. We summarize the science objectives and mission drivers, and the results of a mission design study for implementation as a free flyer mission, with Delta IV launch. Key issues affecting the telescope and detector design are discussed, and a summary of some of the current design concepts being studied in support of EXIST is presented for the wide-field but high resolution coded aperture imaging and very large area array of imaging CZT detectors. Overall mission design is summarized, and technology development needs and a development program are outlined which would enable the launch of EXIST by the end of the decade, as recommended by the NAS/NRC Decadal Survey.
51 - J. Grindlay 2002
A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift mission is described. The proposed Energetic X-ray Imaging Survey Telescope, EXIST, would yield the limiting (practical) GRB trigger sensitivity, broad-band spectral and temporal response, and spatial resolution over a wide field. It would provide high resolution spectra and locations for GRBs detected at GeV energies with GLAST. Together with the next generation missions Constellation-X, NGST and LISA and optical-survey (LSST) telescopes, EXIST would enable GRBs to be used as probes of the early universe and the first generation of stars. EXIST alone would give ~10-50 positions (long or short GRBs), approximate redshifts from lags, and constrain physics of jets, orphan afterglows, neutrinos and SGRs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا