Do you want to publish a course? Click here

HAT-P-20b--HAT-P-23b: Four Massive Transiting Extrasolar Planets

220   0   0.0 ( 0 )
 Added by Gaspar A. Bakos
 Publication date 2010
  fields Physics
and research's language is English
 Authors G. A. Bakos




Ask ChatGPT about the research

We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff=4595+/-80 K, and metallicity [Fe/H]=+0.35+/-0.08. HAT-P-20b has a mass of 7.246+/-0.187 MJ, and radius of 0.867+/-0.033 RJ yielding a mean density of 13.78+/-1.50 gcm^-3 , which is the second highest value among all known exoplanets. HAT-P-21b orbits a V=11.685 G3 dwarf on an eccentric (e=0.2280+/-0.016) orbit, with a period of P=4.1244810+/-000007d. The host star has a mass of 0.95+/-0.04Msun, radius of 1.10+/-0.08Rsun, Teff=5588+/-80K, and [Fe/H]=+0.01+/-0.08. HAT-P-21b has a mass of 4.063+/-0.161MJ, and radius of 1.024+/-0.092RJ. HAT-P-22b orbits the V=9.732 G5 dwarf HD233731, with P=3.2122200+/-0.000009d. The host star has a mass of 0.92+/-0.03Msun, radius of 1.04+/-0.04Rsun, Teff=5302+/-80K, and metallicity of +0.24+/-0.08. The planet has a mass of 2.147+/-0.061 MJ, and compact radius of 1.080+/-0.058RJ. The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits a V=12.432 G0 dwarf star, with a period P=1.212884+/-0.000002d. The host star has a mass of 1.13+/-0.04sun, radius of 1.20+/-0.07Rsun, Teff=5905+/-80K, and [Fe/H]=+0.15+/-0.04. The planetary companion has a mass of 2.090+/-0.111MJ, and radius of 1.368+/-0.090RJ (abridged).



rate research

Read More

We report the discovery of four transiting extrasolar planets (HAT-P-34b - HAT-P-37b) with masses ranging from 1.05 to 3.33 MJ and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 MJ), has a high eccentricity of e = 0.441 +/- 0.032 at P = 5.4526540+/-0.000016 d period, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters.
We report the discovery and characterization of 7 transiting exoplanets from the HATNet survey. The planets, which are hot Jupiters and Saturns transiting bright sun-like stars, include: HAT-P-58b (with mass Mp = 0.37 MJ, radius Rp = 1.33 RJ, and orbital period P = 4.0138 days), HAT-P-59b (Mp = 1.54 MJ, Rp = 1.12 RJ, P = 4.1420 days), HAT-P-60b (Mp = 0.57 MJ, Rp = 1.63 RJ, P = 4.7948 days), HAT-P-61b (Mp = 1.06 MJ, Rp = 0.90 RJ, P = 1.9023 days), HAT-P-62b (Mp = 0.76 MJ, Rp = 1.07 RJ, P = 2.6453 days), HAT-P-63b (Mp = 0.61 MJ, Rp = 1.12 RJ, P = 3.3777 days), and HAT-P-64b (Mp = 0.58 MJ, Rp = 1.70 RJ, P = 4.0072 days). The typical errors on these quantities are 0.06 MJ, 0.03 RJ, and 0.2seconds, respectively. We also provide accurate stellar parameters for each of the hosts stars. With V = 9.710+/-0.050mag, HAT-P-60 is an especially bright transiting planet host, and an excellent target for additional follow-up observations. With Rp = 1.703+/-0.070 RJ, HAT-P-64b is a highly inflated hot Jupiter around a star nearing the end of its main-sequence lifetime, and is among the largest known planets. Five of the seven systems have long-cadence observations by TESS which are included in the analysis. Of particular note is HAT-P-59 (TOI-1826.01) which is within the Northern continuous viewing zone of the TESS mission, and HAT-P-60, which is the TESS candidate TOI-1580.01.
We present the discovery of two transiting exoplanets. HAT-P-28b orbits a V=13.03 G3 dwarf star with a period P = 3.2572 d and has a mass of 0.63 +- 0.04 MJ and a radius of 1.21 + 0.11 -0.08 RJ yielding a mean density of 0.44 +- 0.09 g cm-3. HAT-P-29b orbits a V=11.90 F8 dwarf star with a period P = 5.7232 d and has a mass of 0.78 +0.08 -0.04 MJ and a radius of 1.11 +0.14 -0.08 RJ yielding a mean density of 0.71 +- 0.18 g cm-3. We discuss the properties of these planets in the context of other known transiting planets.
243 - I. Boisse , J. Hartman , G. Bakos 2012
First identified from the HATNet wide-field photometric survey, these candidate transiting planets were then followed-up with a variety of photometric observations. Determining the planetary nature of the objects and characterizing the parameters of the systems were mainly done with the SOPHIE spectrograph at the 1.93m telescope at OHP and the TRES spectrograph at the 1.5m telescope at FLWO. HAT-P-42b and HAT-P-43b are typical hot Jupiters on circular orbits around early-G/late-F main sequence host stars, with periods of 4.641876pm0.000032 and 3.332688pm0.000016 days, masses of 0.975pm0.126 and 0.660pm0.083 Mjup, and radii of 1.277pm0.149 and 1.283+0.057-0.034 Rjup, respectively. These discoveries increase the sample of planets with measured mean densities, which is needed to constrain theories of planetary interiors and atmospheres. Moreover, their hosts are relatively bright (V < 13.5) facilitating further follow-up studies.
301 - Joel D. Hartman 2015
We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3.1220 days. The planet HAT-P-51b has a mass of 0.31 M_J and a radius of 1.29 R_J, and orbits a V = 13.4 mag, M = 0.98 M_sun, R = 1.04 R_sun star with a period of P = 4.2180 days. The planet HAT-P-52b has a mass of 0.82 M_J and a radius of 1.01 R_J, and orbits a V = 14.1 mag, M = 0.89 M_sun, R = 0.89 R_sun star with a period of P = 2.7536 days. The planet HAT-P-53b has a mass of 1.48 M_J and a radius of 1.32 R_J, and orbits a V = 13.7 mag, M = 1.09 M_sun, R = 1.21 R_sun star with a period of P = 1.9616 days. All four planets are consistent with having circular orbits and have masses and radii measured to better than 10% precision. The low stellar jitter and favorable R_P/R_star ratio for HAT-P-51 make it a promising target for measuring the Rossiter-McLaughlin effect for a Saturn-mass planet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا