Do you want to publish a course? Click here

Optical vs. infrared studies of dusty galaxies and AGN: (I) Nebular emission lines

269   0   0.0 ( 0 )
 Added by Vivienne Wild
 Publication date 2010
  fields Physics
and research's language is English
 Authors Vivienne Wild




Ask ChatGPT about the research

Optical nebular emission lines are commonly used to estimate the star formation rate of galaxies and the black hole accretion rate of their central active nucleus. The accuracy of the conversion from line strengths to physical properties depends upon the accuracy to which the lines can be corrected for dust attenuation. For studies of single galaxies with normal amounts of dust, most dust corrections result in the same derived properties within the errors. However, for statistical studies of populations of galaxies, or for studies of galaxies with higher dust contents such as might be found in some classes of transition galaxies, significant uncertainty arises from the dust attenuation correction. We compare the strength of the predominantly unobscured mid-IR [NeII]15.5um + [NeIII]12.8um emission lines to the optical H alpha emission lines in four samples of galaxies: (i) ordinary star forming galaxies, (ii) optically selected dusty galaxies, (iii) ULIRGs, (iv) Seyfert 2 galaxies. We show that a single dust attenuation curve applied to all samples can correct H alpha emission for dust attenuation to a factor better than 2. Similarly, we compare mid-IR [OIV] and optical [OIII] luminosities to find that [OIII] can be corrected to a factor better than 3. This shows that the total dust attenuation suffered by the AGN narrow line region is not significantly different to that suffered by the starforming HII regions in the galaxy. We provide explicit dust attenuation corrections, together with errors, for [OII], [OIII] and H alpha. The best-fit average attenuation curve is slightly greyer than the Milky-Way extinction law, indicating either that external galaxies have slightly different typical dust properties to the Milky Way, or that there is a significant contribution from scattering. Finally, we uncover an intriguing correlation between Silicate absorption and Balmer decrement.



rate research

Read More

Here we present results of the long-term (1987-2010) optical spectral monitoring of the broad line radio galaxy Arp 102B, a prototype of active galactic nuclei with the double-peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore the structure of the broad line region (BLR), we analyze the light curves of the broad Halpha and Hbeta lines and the continuum flux. We aim to estimate the dimensions of the broad-line emitting regions and the mass of the central black hole. We use the CCF to find lags between the lines and continuum variations. We investigate in more details the correlation between line and continuum fluxes, moreover we explore periodical variations of the red-to-blue line flux ratio using Lomb-Scargle periodograms. The line and continuum light curves show several flare-like events. The fluxes in lines and in the continuum are not showing a big change (around 20%) during the monitoring period. We found a small correlation between the line and continuum flux variation, that may indicate that variation in lines has weak connection with the variation of the central photoionization source. In spite of a low line-continuum correlation, using several methods, we estimated a time lag for Hbeta around 20 days. The correlation between the Hbeta and Halpha flux variation is significantly higher than between lines and continuum. During the monitoring period, the Hbeta and Halpha lines show double-peaked profiles and we found an indication for a periodical oscillation in the red-to-blue flux ratio of the Halpha line. The estimated mass of the central black hole is sim 1.1 times 10^8 Modot that is in an agreement with the mass estimated from the M-sigma* relation.
Galaxies occupy different regions of the [OIII]$lambda5007$/H$beta$-versus-[NII]$lambda6584$/H$alpha$ emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic-giant-branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the cosmic evolution of the optical-line ratios [OIII]$lambda5007$/H$beta$, [NII]$lambda6584$/H$alpha$, [SII]$lambdalambda6717,6731$/H$alpha$ and [OI]$lambda6300$/H$alpha$. The line ratios of simulated galaxies agree well with observations of both star-forming and active local SDSS galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [OIII]/H$beta$ increases and [NII]/H$alpha$, [SII]/H$alpha$ and [OI]/H$alpha$ decrease -- widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [OIII]/H$beta$ and [NII]/H$alpha$. For [SII]/H$alpha$ and [OI]/H$alpha$, this applies only to redshifts above $z=1.5$, the evolution at lower redshift being driven in roughly equal parts by nebular emission from AGN and post-AGB stars. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.
We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate Active Galactic Nuclei (AGN) selected in the mid-infrared. This survey selects both normal and obscured AGN closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L_bol~10^10L_sun, to highly luminous quasars (L_bol~10^14L_sun), and with redshifts from 0-4.3. Samples of candidate AGN were selected through mid-infrared color cuts at several different 24 micron flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGN and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type-1 AGN with blue continua, 294 (44%) are type-2 objects with extinctions A_V>~5 towards their AGN, 96 (14%) are AGN with lower extinctions (A_V~1) and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. 50% of the survey objects have L_bol >10^12L_sun, in the quasar regime. We present composite spectra for type-2 quasars and for objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared - emission-line luminosity correlation and present the results of cross-correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) there exist mid-infrared selected AGN candidates which lack AGN signatures in their optical spectra, but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGN often differ.
111 - P. Panuzzo 2003
We present a model for nebular emission in star forming galaxies, which takes into account the effects of dust reprocessing. The nebular emissions have been computed with CLOUDY and then included into GRASIL, our spectrophotometric code specifically developed for dusty galaxies. The interface between nebular emission and population synthesis is based on a set of pre-computed HII region emission models covering a wide range of physical quantities. Concerning the extinction properties of normal star forming galaxies, we are able to interpret the observed lack of correlation between the attenuation measured at Halpha and in the UV band as a consequence of age selective extinction. We also find that, for these galaxies with modest SFR, the ratio FIR/UV provides the best constraints on the UV attenuation. Our model also allows to deal with different SFR estimators in a consistent way, from the UV to radio wavelengths, and to discuss the uncertainties arising from the different physical conditions encountered in star forming galaxies. We provide our best estimates of SFR/luminosity calibrations, together with their expected range of variation. It results that SFR derived through Halpha, even when corrected for extinction using the Balmer decrement, is affected by important uncertainties due to age selective extinction. Another remarkable result is that SFR from UV luminosity corrected by means of the ratio FIR/UV has a small uncertainty. Finally, our model provides a calibration of SFR from radio luminosity; we are also able to reproduce the observed FIR/radio ratio.
127 - G. J. Ferland 2012
The optical [N I] doublet near 5200 {AA} is anomalously strong in a variety of emission-line objects. We compute a detailed photoionization model and use it to show that pumping by far-ultraviolet (FUV) stellar radiation previously posited as a general explanation applies to the Orion Nebula (M42) and its companion M43; but, it is unlikely to explain planetary nebulae and supernova remnants. Our models establish that the observed nearly constant equivalent width of [N I] with respect to the dust-scattered stellar continuum depends primarily on three factors: the FUV to visual-band flux ratio of the stellar population; the optical properties of the dust; and the line broadening where the pumping occurs. In contrast, the intensity ratio [N I]/H{beta} depends primarily on the FUV to extreme-ultraviolet ratio, which varies strongly with the spectral type of the exciting star. This is consistent with the observed difference of a factor of five between M42 and M43, which are excited by an O7 and B0.5 star respectively. We derive a non-thermal broadening of order 5 km/s for the [N I] pumping zone and show that the broadening mechanism must be different from the large-scale turbulent motions that have been suggested to explain the line-widths in this H II region. A mechanism is required that operates at scales of a few astronomical units, which may be driven by thermal instabilities of neutral gas in the range 1000 to 3000 K. In an appendix, we describe how collisional and radiative processes are treated in the detailed model N I atom now included in the Cloudy plasma code.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا