Graph Coloring and Function Simulation


Abstract in English

We prove that every partial function with finite domain and range can be effectively simulated through sequential colorings of graphs. Namely, we show that given a finite set $S={0,1,ldots,m-1}$ and a number $n geq max{m,3}$, any partial function $varphi:S^{^p} to S^{^q}$ (i.e. it may not be defined on some elements of its domain $S^{^p}$) can be effectively (i.e. in polynomial time) transformed to a simple graph $matr{G}_{_{varphi,n}}$ along with three sets of specified vertices $$X = {x_{_{0}},x_{_{1}},ldots,x_{_{p-1}}}, Y = {y_{_{0}},y_{_{1}},ldots,y_{_{q-1}}}, R = {Kv{0},Kv{1},ldots,Kv{n-1}},$$ such that any assignment $sigma_{_{0}}: X cup R to {0,1,ldots,n-1} $ with $sigma_{_{0}}(Kv{i})=i$ for all $0 leq i < n$, is {it uniquely} and {it effectively} extendable to a proper $n$-coloring $sigma$ of $matr{G}_{_{varphi,n}}$ for which we have $$varphi(sigma(x_{_{0}}),sigma(x_{_{1}}),ldots,sigma(x_{_{p-1}}))=(sigma(y_{_{0}}),sigma(y_{_{1}}),ldots,sigma(y_{_{q-1}})),$$ unless $(sigma(x_{_{0}}),sigma(x_{_{1}}),ldots,sigma(x_{_{p-1}}))$ is not in the domain of $varphi$ (in which case $sigma_{_{0}}$ has no extension to a proper $n$-coloring of $matr{G}_{_{varphi,n}}$).

Download