Do you want to publish a course? Click here

Simple groups without lattices

114   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We show that the group of almost automorphisms of a d-regular tree does not admit lattices. As far as we know this is the first such example among (compactly generated) simple locally compact groups.

rate research

Read More

70 - Adrien Le Boudec 2020
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C wr F$, where $C$ is a finite group and $F$ a non-abelian free group.
Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth function gives a new setting where methods of F. Grunewald, D. Segal, and G. C. Smiths Subgroups of finite index in nilpotent groups apply to study arithmetic lattices in an algebraic group. In particular, we show that for any unipotent algebraic $mathbb{Z}$-group with arithmetic lattice $Gamma$, the Dirichlet function associated to the commensurability growth function satisfies an Euler decomposition. Moreover, the local parts are rational functions in $p^{-s}$, where the degrees of the numerator and denominator are independent of $p$. This gives regularity results for the set of arithmetic lattices in $G$.
Let $G$ be a simple algebraic group over an algebraically closed field and let $X$ be an irreducible subvariety of $G^r$ with $r geqslant 2$. In this paper, we consider the general problem of determining if there exists a tuple $(x_1, ldots, x_r) in X$ such that $langle x_1, ldots, x_r rangle$ is Zariski dense in $G$. We are primarily interested in the case where $X = C_1 times cdots times C_r$ and each $C_i$ is a conjugacy class of $G$ comprising elements of prime order modulo the center of $G$. In this setting, our main theorem gives a complete solution to the problem when $G$ is a symplectic or orthogonal group. By combining our results with earlier work on linear and exceptional groups, this gives a complete solution for all simple algebraic groups. We also present several applications. For example, we use our main theorem to show that many faithful representations of symplectic and orthogonal groups are generically free. We also establish new asymptotic results on the probabilistic generation of finite simple groups by pairs of prime order elements, completing a line of research initiated by Liebeck and Shalev over 25 years ago.
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable, e.g. of intermediate growth, (iii) any finitely presented group $E$ with a quotient isomorphic to $G$ contains non-abelian free subgroups, or the stronger (iii) any finitely presented group with a quotient isomorphic to $G$ is large.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا