Do you want to publish a course? Click here

Two-point functions of quenched lattice QCD in Numerical Stochastic Perturbation Theory. (II) The gluon propagator in Landau gauge

130   0   0.0 ( 0 )
 Added by Arwed Schiller
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

This is the second of two papers devoted to the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Such a computation should enable a comparison with results from lattice simulations in order to reveal the genuinely non-perturbative content of the latter. The gluon propagator is computed by means of Numerical Stochastic Perturbation Theory: results range from two up to four loops, depending on the different lattice sizes. The non-logarithmic constants for one, two and three loops are extrapolated to the lattice spacing $a to 0$ continuum and infinite volume $V to infty$ limits.



rate research

Read More

This is the first of a series of two papers on the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to eventually compare with results from lattice simulations in order to enlight the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost propagator in Landau gauge up to three loops. We present results in the infinite volume and $a to 0$ limits, based on a general strategy that we discuss in detail.
We summarize the higher-loop perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to compare with results from lattice simulations in order to expose the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost and gluon propagators in Landau gauge up to three and four loops. We present results in the infinite volume and $a to 0$ limits, based on a general fitting strategy.
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived from the Wilson action. The one-loop result for the gluon propagator is compared to the infinite volume limit of standard lattice perturbation theory.
We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmic parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and $ato 0$ limits. We find accurate coincidence with the one-loop result for the ghost self-energy known from standard Lattice Perturbation Theory and improve our previous estimate for the two-loop constant contribution to the ghost self-energy in Landau gauge. Our results for the perturbative ghost propagator are compared with Monte Carlo measurements of the ghost propagator performed by the Berlin Humboldt university group which has used the exponential relation between potentials and gauge links.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا