Do you want to publish a course? Click here

Simplicity of extremal eigenvalues of the Klein-Gordon equation

171   0   0.0 ( 0 )
 Added by Monika Winklmeier
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials. If the spectrum of this problem is contained in two disjoint real intervals and the two inner boundary points are eigenvalues, we show that these extremal eigenvalues are simple and possess strictly positive eigenfunctions. Examples of electric potentials satisfying these assumptions are given.



rate research

Read More

The scalar Klein-Gordon equation describes wave motion in a waveguide with a cut-off. For example, the displacement of an elastic cord anchored to a solid base by elastic elements can be described by the scalar Klein-Gordon equation. We analyse this equation using the concept of analytical continuation of dispersion diagram. Particularly, it is shown that the dispersion diagram is topologically equivalent to a tube analytically embedded in two-dimensional complex space. The corresponding Fourier integral is studied on this tube using the Cauchys theorem. The basic properties of the scalar Klein-Gordon equation are established.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
We prove that after an arbitrarily small adjustment of edge lengths, the spectrum of a compact quantum graph with $delta$-type vertex conditions can be simple. We also show that the eigenfunctions, with the exception of those living entirely on a looping edge, can be made to be non-vanishing on all vertices of the graph. As an application of the above result, we establish that the secular manifold (also called determinant manifold) of a large family of graphs has exactly two smooth connected components.
A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersive media, thus allowing for the description of broadband radiation-matter interactions and the associated instabilities. The standard results for the classical wave action are recovered in the short wavelength limit of the generalized Wigner-Moyal formalism for the wave equation.
An inverse scattering problem for a quantized scalar field ${bm phi}$ obeying a linear Klein-Gordon equation $(square + m^2 + V) {bm phi} = J mbox{in $mathbb{R} times mathbb{R}^3$}$ is considered, where $V$ is a repulsive external potential and $J$ an external source $J$. We prove that the scattering operator $mathscr{S}= mathscr{S}(V,J)$ associated with ${bm phi}$ uniquely determines $V$. Assuming that $J$ is of the form $J(t,x)=j(t)rho(x)$, $(t,x) in mathbb{R} times mathbb{R}^3$, we represent $rho$ (resp. $j$) in terms of $j$ (resp. $rho$) and $mathscr{S}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا