Do you want to publish a course? Click here

Implications from the optical to UV flux ratio of FeII emission in quasars

517   0   0.0 ( 0 )
 Added by Hiroaki Sameshima
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate FeII emission in Broad Line Region (BLR) of AGNs by analyzing the FeII(UV), FeII(4570) and MgII emission lines in 884 quasars in the Sloan Digital Sky Survey (SDSS) Quasar catalog in a redshift range of 0.727 < z < 0.804. FeII(4570)/FeII(UV) is used to infer the column density of FeII-emitting clouds and explore the excitation mechanism of FeII emission lines. As suggested before in various works, the classical photoionization models fail to account for FeII(4570)/FeII(UV) by a factor of 10, which may suggest anisotropy of UV FeII emission; otherwise, an alternative heating mechanism like shock is working. The column density distribution derived from FeII(4570)/FeII(UV) indicates that radiation pressure plays an important role in BLR gas dynamics. We find a positive correlation between FeII(4570)/FeII(UV) and the Eddington ratio. We also find that almost all FeII-emitting clouds are to be under super-Eddington conditions unless ionizing photon fraction is much smaller than that previously suggested. Finally we propose a physical interpretation of a striking set of correlations between various emission-line properties, known as ``Eigenvector 1.



rate research

Read More

The variability of quasars across multiple wavelengths is a useful probe of physical conditions in active galactic nuclei. In particular, variable accretion rates, instabilities, and reverberation effects in the accretion disk of a supermassive black hole (SMBH) are expected to produce correlated flux variations in UV and optical bands. Recent work has further argued that binary quasars should exhibit strongly correlated UV and optical periodicities. Strong UV-optical correlations have indeed been established in small samples of up to approximately 30 quasars with well-sampled light curves, and have extended the bluer-when-brighter trend previously found within the optical bands. Here we further test the nature of quasar variability by examining the observed-frame UV-optical correlations in a large sample of 1,315 bright quasars with overlapping UV and optical light curves for the Galaxy Evolution Explorer (GALEX) and the Catalina Real-time Transient Survey (CRTS), respectively. We find that strong correlations exist in this much larger sample, but we rule out, at approximately 95% confidence, the simple hypothesis that the intrinsic UV and optical variations of all quasars are fully correlated. Our results therefore imply the existence of physical mechanism(s) that can generate uncorrelated optical and UV flux variations.
We present Chandra observations of 2106 radio-quiet quasars in the redshift range 1.7<z<2.7 from the Sloan Digital Sky Survey (SDSS), through data release fourteen (DR14), that do not contain broad absorption lines (BAL) in their rest-frame UV spectra. This sample adds over a decade worth of SDSS and Chandra observations to our previously published sample of 139 quasars from SDSS DR5 which is still used to correlate X-ray and optical/UV emission in typical quasars. We fit the SDSS spectra for 753 of the quasars in our sample that have high-quality (exposure time $gtrapprox$10 ks and off-axis observation angle <10 arcmin) X-ray observations, and analyze their X-ray-to-optical SED properties ($alpha_{ox}$ and $Deltaalpha_{ox}$) with respect to the measured CIV and MgII emission-line rest-frame equivalent width (EW) and the CIV emission-line blueshift. We find significant correlations (at the >99.99% level) between $alpha_{ox}$ and these emission-line parameters, as well as between $Deltaalpha_{ox}$ and CIV EW. Slight correlations are found between $Deltaalpha_{ox}$ and CIV blueshift, MgII EW, and the CIV EW to MgII EW ratio. The best-fit trend in each parameter space is used to compare the X-ray weakness ($Deltaalpha_{ox}$) and optical/UV emission properties of typical quasars and weak-line quasars (WLQs). The WLQs typically exhibit weaker X-ray emission than predicted by the typical quasar relationships. The best-fit relationships for our typical quasars are consistent with predictions from the disk-wind quasar model. The behavior of the WLQs compared to our typical quasars can be explained by an X-ray shielding model.
113 - W.H. Bian 2010
It is found that feii emission contributes significantly to the optical and ultraviolet spectra of most active galactic nuclei. The origin of the optical/UV feii emission is still a question open to debate. The variability of feii would give clues to this origin. Using 7.5 yr spectroscopic monitoring data of one Palomer-Green (PG) quasi-stellar object (QSO), PG 1700+518, with strong optical feii emission, we obtain the light curves of the continuum lv, feii, the broad component of hb, and the narrow component of hb by the spectral decomposition. Through the interpolation cross-correlation method, we calculate the time lags for light curves of feii, the total hb, the broad component of hb, and the narrow component of hb with respect to the continuum light curve. We find that the feii time lag in PG1700+518 is $209^{+100}_{-147}$ days, and the hb time lag cannot be determined. Assuming that feii and hb emission regions follow the virial relation between the time lag and the FWHM for the hb and feii emission lines, we can derive that the hb time lag is $148^{+72}_{-104}$ days. The hb time lag calculated from the empirical luminosity--size relation is 222 days, which is consistent with our measured feii time lag. Considering the optical feii contribution, PG 1700+518 shares the same characteristic on the spectral slope variability as other 15 PG QSOs in our previous work, i.e., harder spectrum during brighter phase.
100 - N. Sukanya 2015
We have used optical V and R band observations from the Massive Compact Halo Object (MACHO) project on a sample of 59 quasars behind the Magellanic clouds to study their long term optical flux and colour variations. These quasars lying in the redshift range of 0.2 < z < 2.8 and having apparent V band magnitudes between 16.6 and 20.1 mag have observations ranging from 49 to 1353 epochs spanning over 7.5 years with frequency of sampling between 2 to 10 days. All the quasars show variability during the observing period. The normalized excess variance (Fvar) in V and R bands are in the range 0.2% < Fvar < 1.6% and 0.1% < Fvar < 1.5%. In a large fraction of the sources, Fvar is larger in the V-band compared to the R-band. From the z-transformed discrete cross correlation function analysis, we find that there is no lag between the V and R-band variations. Adopting the Markov Chain Monte Carlo (MCMC) approach, and properly taking into account the correlation between the errors in colours and magnitudes, it is found that majority of the sources show a bluer when brighter trend, while a minor fraction of quasars show the opposite behaviour. This is similar to the results obtained from other two independent algorithms namely the weighted linear least squares fit (FITEXY) and the bivariate correlated errors and intrinsic scatter regression (BCES). However, the ordinary least squares (OLS) fit normally used in the colour variability studies of quasars, indicates that all the quasars studied here show a bluer when brighter trend. It is therefore very clear that OLS algorithm cannot be used for the study of colour variability in quasars.
We present a study of the relation between X-rays and ultraviolet emission in quasars for a sample of broad-line, radio-quiet objects obtained from the cross-match of the Sloan Digital Sky Survey DR14 with the latest Chandra Source Catalog 2.0 (2,332 quasars) and the Chandra COSMOS Legacy survey (273 quasars). The non-linear relation between the ultraviolet (at 2500 A, $L_{O}$) and the X-ray (at 2 keV, $L_{X}$) emission in quasars has been proved to be characterised by a smaller intrinsic dispersion than the observed one, as long as a homogeneous selection, aimed at preventing the inclusion of contaminants in the sample, is fulfilled. By leveraging on the low background of Chandra, we performed a complete spectral analysis of all the data available for the SDSS-CSC2.0 quasar sample (i.e. 3,430 X-ray observations), with the main goal of reducing the uncertainties on the source properties (e.g. flux, spectral slope). We analysed whether any evolution of the $L_{X}-L_{O}$ relation exists by dividing the sample in narrow redshift intervals across the redshift range spanned by our sample, $z simeq 0.5-4$. We find that the slope of the relation does not evolve with redshift and it is consistent with the literature value of $0.6$ over the explored redshift range, implying that the mechanism underlying the coupling of the accretion disc and hot corona is the same at the different cosmic epochs. We also find that the dispersion decreases when examining the highest redshifts, where only pointed observations are available. These results further confirm that quasars are `standardisable candles, that is we can reliably measure cosmological distances at high redshifts where very few cosmological probes are available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا