Do you want to publish a course? Click here

Fault tolerant Quantum Information Processing with Holographic control

253   0   0.0 ( 0 )
 Added by Gerardo Paz Silva
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a fault-tolerant semi-global control strategy for universal quantum computers. We show that N-dimensional array of qubits where only (N-1)-dimensional addressing resolution is available is compatible with fault-tolerant universal quantum computation. What is more, we show that measurements and individual control of qubits are required only at the boundaries of the fault-tolerant computer, i.e. holographic fault-tolerant quantum computation. Our model alleviates the heavy physical conditions on current qubit candidates imposed by addressability requirements and represents an option to improve their scalability.



rate research

Read More

184 - Rui Chao , Ben W. Reichardt 2017
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with fault-tolerance schemes with multiple encoded qubits. The 15-qubit Hamming code protects seven encoded qubits to distance three. We give fault-tolerant procedures for applying arbitrary Clifford operations on these encoded qubits, using only two extra qubits, 17 total. In particular, individual encoded qubits within the code block can be targeted. Fault-tolerant universal computation is possible with four extra qubits, 19 total. The procedures could enable testing more sophisticated protected circuits in small-scale quantum devices. Our main technique is to use gadgets to protect gates against correlated faults. We also take advantage of special code symmetries, and use pieceable fault tolerance.
Robustness and reliability are two key requirements for developing practical quantum control systems. The purpose of this paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults so that the closed-loop quantum system has both fault tolerance and H-infinity disturbance attenuation performance. This paper first extends the physical realization conditions from the time-invariant case to the time-varying case for linear stochastic quantum systems. By relating the fault tolerant H-infinity control problem to the dissipation properties and the solutions of Riccati differential equations, an H-infinity controller for the quantum system is then designed by solving a set of linear matrix inequalities (LMIs). In particular, an algorithm is employed to introduce additional noises and to construct the corresponding input matrices to ensure the physical realizability of the quantum controller. For real applications of the developed fault-tolerant control strategy, we present a linear quantum system example from quantum optics, where the amplitude of the pumping field randomly jumps among different values. It is demonstrated that a quantum H-infinity controller can be designed and implemented using some basic optical components to achieve the desired control goal.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise, and have a lower overhead cost, than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer, and can be expressed either in terms of the operator norm of the baths Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.
The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the linear optical network. In this work we propose a topologically error-corrected architecture that does away with these elements at no cost - in fact, at an advantage - to state preparation overheads. Our computer consists of three modules: a 2D array of probabilistic sources of GKP states; a depth-four circuit of static beamsplitters, phase shifters, and single-time-step delay lines; and a 2D array of homodyne detectors. The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and uniform photon loss within the noise model, resulting in more comprehensive threshold estimates. These jumps over both architectural and analytical hurdles considerably expedite the construction of a photonic quantum computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا