No Arabic abstract
In their famous paper Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of $N$ interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays however the realization that Nature is not always so nearsighted has driven us up Perdews Jacobs ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very much like what the local density approximation (LDA) is to conventional ground-state DFT. While some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this article will focus on many-body corrections to LR-TD-DFT as one way to building hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.
We propose a computationally efficient approach to the nonadiabatic time-dependent density functional theory (TDDFT) which is based on a representation of the frequency-dependent exchange correlation kernel as a response of a set of damped oscillators. The requirements to computational resources needed to implement our approach do not differ from those of the standard real-time TDDFT in the adiabatic local density approximation (ALDA). Thus, our result offers an exciting opportunity to take into account temporal nonlocality and memory effects in calculations with TDDFT in quantum chemistry and solid state physics for unprecedentedly low costs.
We evaluate the density matrix of an arbitrary quantum mechanical system in terms of the quantities pertinent to the solution of the time-dependent density functional theory (TDDFT) problem. Our theory utilizes the adiabatic connection perturbation method of G{o}rling and Levy, from which the expansion of the many-body density matrix in powers of the coupling constant $lambda$ naturally arises. We then find the reduced density matrix $rho_lambda({bf r},{bf r},t)$, which, by construction, has the $lambda$-independent diagonal elements $rho_lambda({bf r},{bf r},t)=n({bf r},t)$, $n({bf r},t)$ being the particle density. The off-diagonal elements of $rho_lambda({bf r},{bf r},t)$ contribute importantly to the processes, which cannot be treated via the density, directly or by the use of the known TDDFT functionals. Of those, we consider the momentum-resolved photoemission, doing this to the first order in $lambda$, i.e., on the level of the exact exchange theory. In illustrative calculations of photoemission from the quasi-2D electron gas and isolated atoms, we find quantitatively strong and conceptually far-reaching differences with the independent-particle Fermis golden rule formula.
We present an improved approach for generating a set of optimized frontier orbitals (HOMO and LUMO) that minimizes the energy of one double configuration. We further benchmark the effect of including such a double within a CIS or TD-DFT configuration interaction Hamiltonian for a set of test cases. We find that, although we cannot achieve quantitative accuracy, the algorithm is quite robust and routinely delivers an enormous qualitative improvement to standard single-reference electronic structure calculations.
We develop numerical methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta generalized gradient approximation (meta-GGA) proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt a predictor-corrector step for stable time-evolution. Since energy functional is not known for the TB-mBJ potential, we propose a method to evaluate electronic excitation energy without referring to the energy functional. Calculations using the HSE hybrid functional is computationally expensive due to the nonlocal Fock-like term. We develop a computational method for the operation of the Fock-like term in Fourier space, for which we employ massively parallel computers equipped with graphic processing units. To demonstrate significances of utilizing potentials providing correct band gap energies, we compare electronic excitations induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: results using TB-mBJ and HSE are close to each other, while the excitation of the LDA calculation is more intensive than the others. At high laser intensities close to a damage threshold, we have found that electronic excitation energies are similar among the three cases.
Time-dependent density-functional theory (TDDFT) is a computationally efficient first-principles approach for calculating optical spectra in insulators and semiconductors, including excitonic effects. We show how exciton wave functions can be obtained from TDDFT via the Kohn-Sham transition density matrix, both in the frequency-dependent linear-response regime and in real-time propagation. The method is illustrated using one-dimensional model solids. In particular, we show that our approach provides insight into the formation and dissociation of excitons in real time. This opens the door to time-resolved studies of exciton dynamics in materials by means of real-time TDDFT.