Asymmetric orbital-lattice interactions in ultra-thin correlated oxide films


Abstract in English

Using resonant X-ray spectroscopies combined with density functional calculations, we find an asymmetric bi-axial strain-induced $d$-orbital response in ultra-thin films of the correlated metal LaNiO$_3$ which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral breathing distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.

Download