Connes embedding problem and Tsirelsons problem


Abstract in English

We show that Tsirelsons problem concerning the set of quantum correlations and Connes embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchbergs QWEP conjecture) are essentially equivalent. Specifically, Tsirelsons problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes embedding problem asks whether any separable II$_1$ factor is a subfactor of the ultrapower of the hyperfinite II$_1$ factor. We show that an affirmative answer to Connes question implies a positive answer to Tsirelsons. Conversely, a positve answer to a matrix valued version of Tsirelsons problem implies a positive one to Connes problem.

Download