Do you want to publish a course? Click here

Measurement of the in-medium phi-meson width in proton-nucleus collisions

257   0   0.0 ( 0 )
 Added by Colin Wilkin
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The production of phi mesons in the collisions of 2.83 GeV protons with C, Cu, Ag, and Au at forward angles has been measured via the phi -> K+K- decay using the COSY-ANKE magnetic spectrometer. The phi meson production cross section follows a target mass dependence of A^0.56+/-0.02 in the momentum region of 0.6-1.6 GeV/c. The comparison of the data with model calculations suggests that the in-medium phi width is about an order of magnitude larger than its free value.



rate research

Read More

149 - Xiaojian Du , Ralf Rapp 2018
We study charmonium production in proton-nucleus ($p$-A) collisions focusing on final-state effects caused by the formation of an expanding medium. Toward this end, we utilize a rate equation approach within a fireball model as previously employed for a wide range of heavy-ion collisions, adapted to the small systems in $p$-A collisions. The initial geometry of the fireball is taken from a Monte-Carlo event generator where initial anisotropies are caused by fluctuations. We calculate the centrality and transverse-momentum dependent nuclear modification factor ($R_{p{rm A}}$) as well as elliptic flow ($v_2$) for both $J/psi$ and $psi(2S)$ and compare them to experimental data from RHIC and the LHC. While the $R_{p{rm A}}$s show an overall fair agreement with most of the data, the large $v_2$ values observed in $p$-Pb collisions at the LHC cannot be accounted for in our approach. While the former finding generally supports the formation of a near thermalized QCD medium in small systems, the discrepancy in the $v_2$ suggests that its large observed values are unlikely to be due to the final-state collectivity of the fireball alone.
153 - Yu. Valdau , V. Koptev , S. Barsov 2011
The momentum spectra of K+ produced at small angles in proton-proton and proton-deuteron collisions have been measured at four beam energies, 1.826, 1.920, 2.020, and 2.650 GeV, using the ANKE spectrometer at COSY-Juelich. After making corrections for Fermi motion and shadowing, the data indicate that K+ production near threshold is stronger in pp- than in pn-induced reactions. However, most of this difference could be made up by the unobserved K0 production in the pn case.
The HADES data from p+Nb collisions at center of mass energy of $sqrt{s_{NN}}$= 3.2 GeV are analyzed by employing a statistical model. Accounting for the identified hadrons $pi^0$, $eta$, $Lambda$, $K^{0}_{s}$, $omega$ allows a surprisingly good description of their abundances with parameters $T_{chem}=(99pm11)$ MeV and $mu_{b}=(619pm34)$ MeV, which fits well in the chemical freeze-out systematics found in heavy-ion collisions. In supplement we reanalyze our previous HADES data from Ar+KCl collisions at $sqrt{s_{NN}}$= 2.6 GeV with an updated version of the statistical model. We address equilibration in heavy-ion collisions by testing two aspects: the description of yields and the regularity of freeze-out parameters from a statistical model fit. Special emphasis is put on feed-down contributions from higher-lying resonance states which have been proposed to explain the experimentally observed $Xi^-$ excess present in both data samples.
Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high degree of the polarized proton beam of COSY, the reaction pp{to} pp{eta} has been measured close to threshold to explore the analyzing power Ay. The angular distribution of Ay is determined with the precision improved by more than one order of magnitude with respect to previous results allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q = 15 MeV signaling s wave production with no evidence for higher partial waves. At Q = 72 MeV the data reveals strong interference of P s and P p partial waves and cancellation of (P p) and Ss*Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the {eta} meson.
Using a model based on the Color Glass Condensate framework and the dilute-dense factorization, we systematically study the azimuthal angular correlations between a heavy flavor meson and a light reference particle in proton-nucleus collisions. The obtained second harmonic coefficients (also known as the elliptic flows) for $J/psi$ and $D^0$ agree with recent experimental data from the LHC. We also provide predictions for the elliptic flows of $Upsilon$ and $B$ meson, which can be measured in the near future at the LHC. This work can shed light on the physics origin of the collectivity phenomenon in the collisions of small systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا