We study the ordering of the spin and the chirality in the fully frustrated XY model on a square lattice by extensive Monte Carlo simulations. Our results indicate unambiguously that the spin and the chirality exhibit separate phase transitions at two distinct temperatures, i. e. , the occurrence of the spin-chirality decoupling. The chirality exhibits a long-range order at T_c=0.45324(1) via a second-order phase transition, where the spin remains disordered with a finite correlation length xi_s(T_c) sim 120. The critical properties of the chiral transition determined from a finite-size scaling analysis for large enough systems of linear size L > xi_s(T_c) are well compatible with the Ising universality. On the other hand, the spin exhibits a phase transition at a lower temperature T_s=0.4418(5) into the quasi-long-range-ordered phase. We found eta(T_s)=0.201(1), suggesting that the universality of the spin transition is different from that of the conventional Kosterlitz-Thouless (KT) transition.