Do you want to publish a course? Click here

Abundances for a large sample of red giants in NGC 1851: hints for a merger of two clusters?

110   0   0.0 ( 0 )
 Added by Angela Bragaglia
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the abundance analysis of a sample of more than 120 red giants in the globular cluster (GC) NGC 1851, based on FLAMES spectra. We find a small but detectable metallicity spread. This spread is compatible with the presence of two different groups of stars with a metallicity difference of 0.06-0.08 dex, in agreement with earlier photometric studies. If stars are divided into these two groups according to their metallicity, both components show a Na-O anticorrelation (signature of a genuine GC nature) of moderate extension. The metal-poor stars are more concentrated than the metal-rich ones. We tentatively propose the hypothesis that NGC 1851 formed from a merger of two individual GCs with a slightly different Fe and alpha-element content, and possibly an age difference up to 1 Gyr. This is supported also by number ratios of stars on the split subgiant and on the bimodal horizontal branches. The distribution of n-capture process elements in the two components also supports the idea that the enrichment must have occurred in each of the structures separately, and not as a continuum of events in a single GC. The most probable explanation is that the proto-clusters formed into a (now dissolved) dwarf galaxy and later merged to produce the present GC.



rate research

Read More

487 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic spectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their $alpha$ and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either $alpha$ (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.
NGC 2420 is a $sim$2 Gyr-old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities for this open cluster. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution (R = 22,500) near-infrared ($lambda$1.5 - 1.7$mu$m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains 6 stars that are identified as members of the first-ascent red giant branch (RGB), as well as 6 members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = -0.16 $pm$ 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small ($sim$0.03 - 0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the $^{12}$C and $^{14}$N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.
We present abundances of several light, alpha, Fe-peak, and neutron-capture elements for 66 red giant branch (RGB) stars in the Galactic globular cluster Omega Centauri. Our observations lie in the range 12.0<V<13.5 and focus on the intermediate and metal-rich RGBs. We find that there are at least four peaks in the metallicity distribution function at [Fe/H]=-1.75, -1.45, -1.05, and -0.75, which correspond to about 55%, 30%, 10%, and 5% of our sample, respectively. Additionally, the most metal-rich stars are the most centrally located. Na and Al are correlated despite exhibiting star-to-star dispersions of more than a factor of 10, but the distribution of those elements appears to be metallicity dependent and are divided at [Fe/H]~-1.2. About 40-50% of stars with [Fe/H]<-1.2 have Na and Al abundances consistent with production solely in Type II supernovae and match observations of disk and halo stars at comparable metallicity. The remaining metal-poor stars are enhanced in Na and Al compared to their disk and halo counterparts and are mostly consistent with predicted yields from >5 M_sun asymptotic giant branch (AGB) stars. At [Fe/H]>-1.2, more than 75% of the stars are Na/Al enhanced and may have formed almost exclusively from AGB ejecta. Most of these stars are enhanced in Na by at least 0.2 dex for a given Al abundance than would be expected based on normal globular cluster values. All stars in our sample are alpha-rich and have solar-scaled Fe-peak abundances. Eu does not vary extensively as a function of metallicity; however, [La/Fe] varies from about -0.4 to +2 and stars with [Fe/H]>-1.5 have [La/Eu] values indicating domination by the s-process. A quarter of our sample have [La/Eu]>+1 and may be the result of mass transfer in a binary system.
We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the CaII lines with FORS2 on the Very Large Telescope (VLT). We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km/s, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at -1.1 and -0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from CaT spectra of a large sample of field stars Dobbie et al. (2014). This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique AMR in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا