Do you want to publish a course? Click here

Intrinsic and dopant enhanced solid phase epitaxy in amorphous germanium

121   0   0.0 ( 0 )
 Added by Brett Johnson Dr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) is stud- ied in amorphous germanium (a-Ge) layers formed by ion implantation on <100> Ge substrates. The SPE rates were measured with a time-resolved reflectivity (TRR) system between 300 and 540 degC and found to have an activation energy of (2.15 +/- 0.04) eV. To interpret the TRR measurements the refractive indices of the a-Ge layers were measured at the two wavelengths used, 1.152 and 1.532 {mu}m. For the first time, SPE rate measurements on thick a-Ge layers (>3 {mu}m) have also been performed to distinguish between bulk and near-surface SPE growth rate behavior. Possible effects of explosive crystallization on thick a-Ge layers are considered. When H is present in a-Ge it is found to have a considerably greater retarding affect on the SPE rate than for similar concentrations in a-Si layers. Hydrogen is found to reduce the pre-exponential SPE velocity factor but not the activation energy of SPE. However, the extent of H indiffusion into a-Ge surface layers during SPE is about one order of magnitude less that that observed for a-Si layers. This is thought to be due to the lack of a stable surface oxide on a-Ge. Dopant enhanced kinetics were measured in a-Ge layers containing uniform concentration profiles of implanted As or Al spanning the concentration regime 1-10 x1019 /cm-3. Dopant compensation effects are also observed in a-Ge layers containing equal concentrations of As and Al, where the SPE rate is similar to the intrinsic rate. Various SPE models are considered in light of these data.



rate research

Read More

The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) are stud- ied in buried amorphous Si (a-Si) layers in which SPE is not retarded by H. As, P, B and Al profiles were formed by multiple energy ion implantation over a con- centration range of 1 - 30 x 1019 /cm3. Anneals were performed in air over the temperature range 460-660 oC and the rate of interface motion was monitored us- ing time resolved reflectivity. The dopant-enhanced SPE rates were modeled with the generalized Fermi level shifting model using degenerate semiconductor statis- tics. The effect of band bending between the crystalline and amorphous sides of the interface is also considered.
123 - S. Zhou , F. Liu , S. Prucnal 2015
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of around 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.
The direct growth of semiconductors over metals by molecular beam epitaxy is a difficult task due to the large differences in crystallization energy between these types of materials. This aspect is problematic in the context of spintronics, where coherent spin-injection must proceed via ballistic transport through sharp interfacial Schottky barriers. We report the realization of single-crystalline ferromagnet/semiconductor/ferromagnet hybrid trilayers using solid-phase epitaxy, with combinations of Fe3Si, Co2FeSi, and Ge. The slow annealing of amorphous Ge over Fe3Si results in a crystalline filmlm identified as FeGe2. When the annealing is performed over Co2FeSi, reflected high-energy electron diffraction and X-ray diffraction indicate the creation of a different crystalline Ge(Co,Fe,Si) compound, which also preserves growth orientation. It was possible to observe independent magnetization switching of the ferromagnetic layers in a Fe3Si/FeGe2/Co2FeSi sample, thanks to the different coercive fields of the two metals and to the quality of the interfaces. This result is a step towards the implementation of vertical spin-selective transistor-like devices.
168 - J. Sadowski , M. Adell , J. Kanski 2005
Formation of MnAs quantum dots in a regular ring-like distribution has been found on MBE-grown (GaMn)As surfaces after low-temperature annealing under As capping. The Mn was supplied by out-diffusing Mn interstitials from (GaMn)As. With 5 at% substitutional Mn the quantum dots appeared for (GaMn)As layers thicker than 500 A. For thinner layers the Mn-rich surfaces, presumably monolayer thick MnAs, are smooth and well-ordered (1x2), and are well suited for continued epitaxial growth.
191 - D. S. Bouma , Z. Chen , B. Zhang 2019
The amorphous iron-germanium system ($a$-Fe$_x$Ge$_{1-x}$) lacks long-range structural order and hence lacks a meaningful Brillouin zone. The magnetization of aFeGe is well explained by the Stoner model for Fe concentrations $x$ above the onset of magnetic order around $x=0.4$, indicating that the local order of the amorphous structure preserves the spin-split density of states of the Fe-$3d$ states sufficiently to polarize the electronic structure despite $mathbf{k}$ being a bad quantum number. Measurements reveal an enhanced anomalous Hall resistivity $rho_{xy}^{mathrm{AH}}$ relative to crystalline FeGe; this $rho_{xy}^{mathrm{AH}}$ is compared to density functional theory calculations of the anomalous Hall conductivity to resolve its underlying mechanisms. The intrinsic mechanism, typically understood as the Berry curvature integrated over occupied $mathbf{k}$-states but shown here to be equivalent to the density of curvature integrated over occupied energies in aperiodic materials, dominates the anomalous Hall conductivity of $a$-Fe$_x$Ge$_{1-x}$ ($0.38 leq x leq 0.61$). The density of curvature is the sum of spin-orbit correlations of local orbital states and can hence be calculated with no reference to $mathbf{k}$-space. This result and the accompanying Stoner-like model for the intrinsic anomalous Hall conductivity establish a unified understanding of the underlying physics of the anomalous Hall effect in both crystalline and disordered systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا