Let $H$ be a Hopf algebra, $A/B$ be an $H$-Galois extension. Let $D(A)$ and $D(B)$ be the derived categories of right $A$-modules and of right $B$-modules respectively. An object $M^cdotin D(A)$ may be regarded as an object in $D(B)$ via the restriction functor. We discuss the relations of the derived endomorphism rings $E_A(M^cdot)=op_{iinmathbb{Z}}Hom_{D(A)}(M^cdot,M^cdot[i])$ and $E_B(M^cdot)=op_{iinmathbb{Z}}Hom_{D(B)}(M^cdot,M^cdot[i])$. If $H$ is a finite dimensional semisimple Hopf algebra, then $E_A(M^cdot)$ is a graded subalgebra of $E_B(M^cdot)$. In particular, if $M$ is a usual $A$-module, a necessary and sufficient condition for $E_B(M)$ to be an $H^*$-Galois graded extension of $E_A(M)$ is obtained. As an application of the results, we show that the Koszul property is preserved under Hopf Galois graded extensions.