Do you want to publish a course? Click here

General Relativity As an Aether Theory

171   0   0.0 ( 0 )
 Added by Frank Tipler
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shall use a combination of Lorentzs and Kelvins conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvins aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.



rate research

Read More

This review summarizes the current status of the energy conditions in general relativity and quantum field theory. We provide a historical review and a summary of technical results and applications, complemented with a few new derivations and discussions. We pay special attention to the role of the equations of motion and to the relation between classical and quantum theories. Pointwise energy conditions were first introduced as physically reasonable restrictions on matter in the context of general relativity. They aim to express e.g. the positivity of mass or the attractiveness of gravity. Perhaps more importantly, they have been used as assumptions in mathematical relativity to prove singularity theorems and the non-existence of wormholes and similar exotic phenomena. However, the delicate balance between conceptual simplicity, general validity and strong results has faced serious challenges, because all pointwise energy conditions are systematically violated by quantum fields and also by some rather simple classical fields. In response to these challenges, weaker statements were introduced, such as quantum energy inequalities and averaged energy conditions. These have a larger range of validity and may still suffice to prove at least some of the earlier results. One of these conditions, the achronal averaged null energy condition, has recently received increased attention. It is expected to be a universal property of the dynamics of all gravitating physical matter, even in the context of semiclassical or quantum gravity.
206 - J. David Brown 2020
The general relativistic theory of elasticity is reviewed from a Lagrangian, as opposed to Eulerian, perspective. The equations of motion and stress-energy-momentum tensor for a hyperelastic body are derived from the gauge-invariant action principle first considered by DeWitt. This action is a natural extension of the action for a single relativistic particle. The central object in the Lagrangian treatment is the Landau-Lifshitz radar metric, which is the relativistic version of the right Cauchy-Green deformation tensor. We also introduce relativistic definitions of the deformation gradient, Green strain, and first and second Piola-Kirchhoff stress tensors. A gauge-fixed description of relativistic hyperelasticity is also presented, and the nonrelativistic theory is derived in the limit as the speed of light becomes infinite.
We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume integral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.
106 - George F. R. Ellis 2015
This is Chapter 1 in the book General Relativity and Gravitation: A Centennial Perspective, Edited by Abhay Ashtekar (Editor in Chief), Beverly Berger, James Isenberg, Malcolm MacCallum. Publisher: Cambridge University Press (June, 2015). It gives a survey of themes that have been developed during the 100 years of progress in general relativity theory.
110 - C. Anastopoulos , B. L. Hu 2014
In this note we show that Newton-Schrodinger Equations (NSEs) [arXiv:1210.0457 and references therein] do not follow from general relativity (GR) and quantum field theory (QFT) by way of two considerations: 1) Taking the nonrelativistic limit of the semiclassical Einstein equation, the central equation of relativistic semiclassical gravity, a fully covariant theory based on GR+QFT with self-consistent backreaction of quantum matter on the spacetime dynamics; 2) Working out a model [see C. Anastopoulos and B. L. Hu, Class. Quant. Grav. 30, 165007 (2013), arXiv:1305.5231] with a matter scalar field interacting with weak gravity, in procedures analogous to the derivation of the nonrelativistic limit of quantum electrodynamics. We conclude that the coupling of classical gravity with quantum matter can only be via mean fields, there are no $N$-particle NSEs and theories based on Newton-Schrodinger equations assume unknown physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا