It is shown that in some special cases the Cherenkov radiation from a charged particle moving along the axis of cylindrical waveguide filled with a semi-infinite material consisting of dielectric plates alternated with vacuum gaps is many times stronger than that in the waveguide filled with semi-infinite solid dielectric without vacuum gaps.
We investigate the radiation from a charged particle moving outside a dielectric cylinder parallel to its axis. It is assumed that the cylinder is immersed into a homogeneous medium. The expressions are given for the vector potential and for the electric and magnetic fields. The spectral distributions are studied for three types of the radiations: (i) Cherenkov radiation (CR) in the exterior medium, (ii) radiation on the guided modes of the dielectric cylinder, and (iii) emission of surface polaritons. Unlike the first two types of radiations, there is no velocity threshold for the generation of surface polaritons. The corresponding radiation is present in the spectral range where the dielectric permittivities of the cylinder and surrounding medium have opposite signs. The spectral range of the emitted surface polaritons becomes narrower with decreasing energy of the particle. The general results are illustrated for a special case of the Drude model for dispersion of the dielectric permittivity of the cylinder. We show that the presence of the cylinder may lead to the appearance of strong narrow peaks in the spectral distribution of the CR in the exterior medium. The conditions are specified for the appearance of those peaks and the corresponding heights and widths are analytically estimated. The collective effects of particles in bunches are discussed.
Cherenkov radiation (CR) generated by a charge moving through a hollow conical target made of dielectric material is analyzed. We consider two cases: the charge moves from the base of the cone to its top (``straight cone) or from the top to the base (``inverted cone). Unlike previous papers, a nonzero shift of the charge trajectory from the symmetry axis is taken into account which leads to generation of asymmetric CR. The most interesting effect is the phenomenon of ``Cherenkov spotlight which has been reported earlier for axially symmetric problems. This effect allows essential enhancement of the CR intensity in the far-field region by proper selection of the targets parameters and charge velocity. Here we describe the influence of charge shift on CR far-field patterns paying the main attention to the ``Cherenkov spotlight regime. Influence of variation of the charge speed on this phenomenon is also investigated.
The Cherenkov radiation is substantially modified in the presence of a medium with a nontrivial dispersion relation. We consider Cherenkov emission spectra of a point charge moving in general three- (3D) and two-dimensional (2D) photonic crystals. Exact analytical expressions for the spectral distribution of the radiated power are obtained in terms of the Bloch mode expansion. The resulting expression reduces to a simple contour integral (3D case) or a one-dimensional sum (2D case) over a small fraction of the reciprocal space, which is defined by the generalized Cherenkov condition. We apply our method to a specific case of an electron moving with different velocities in a 2D square-lattice photonic crystal. Our method demonstrates an excellent agreement with numerically rigorous finite-difference time-domain calculations while being less demanding on computational resources.
We propose a new type of axisymmetric dielectric target which effectively concentrates Cherenkov radiation (CR) generated in the bulk of the material into a small vicinity of focus point. It can be called the axicon-based concentrator for CR. A theoretical investigation of radiation field produced by a charge moving through the discussed radiator is performed for the general case where a charge trajectory is shifted with respect to the structure axis. The idea of dielectric target with specific profile of the outer surface was presented and developed in our preceeding papers. However, contrary to the previous configuration of such a target (which was investigated for both centered and shifted charge trajectory), the current version allows efficient concentration of CR energy from relativistic particles, making this device extremely prospective for various applications.
We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-power laser irradiating a mirco-plasma-waveguide (MPW). When the laser pulse enters the MPW, high-charge electron bunches are produced and accelerated to ~ 100 MeV by the transverse magnetic modes. A substantial part of the electron energy is transferred to THz emission through coherent diffraction radiation as the electron bunches exit the MPW. We demonstrate this process with three-dimensional particle-in-cell simulations. The frequency of the radiation is determined by the incident laser duration, and the radiated energy is found to be strongly correlated to the charge of the electron bunches, which can be controlled by the laser intensity and micro-engineering of the MPW target. Our simulations indicate that 100-mJ level relativistic-intense THz pulses with tunable frequency can be generated at existing laser facilities, and the overall efficiency reaches 1%.