The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z=1


Abstract in English

[Abridged] With the first 10000 spectra of the flux limited zCOSMOS sample (I<=22.5) we study the evolution of environmental effects on galaxy properties since z=1.0, and disentangle the dependence among galaxy colour, stellar mass and local density (3D local density contrast `delta, computed with the 5th nearest neighbour approach). We confirm that within a luminosity-limited sample (M_B<=-20.5-z) the fraction of red (U-B>=1) galaxies f_red depends on delta at least up to z=1, with red galaxies residing mainly in high densities. This trend weakens for increasing z, and it is mirrored by the behaviour of the fraction of galaxies with D4000A break >=1.4. We also find that up to z=1 the fraction of galaxies with log(EW[OII]) >=1.15 is higher for lower delta, and also this dependence weakens for increasing z. Given the triple dependence among galaxy colours, stellar mass and delta, the colour-delta relation found in the luminosity-selected sample can be due to the broad range of stellar masses. Thus, we fix the stellar mass and we find that in this case the colour-delta relation is flat up to z=1 for galaxies with log(M/M_sun)>=10.7. This means that for these masses the colour-delta relation found in a luminosity-selected sample is the result of the combined colour-mass and mass-delta relations. In contrast, we find that for 0.1<=z<=0.5 and log(M/M_sun)<=10.7 f_red depends on delta even at fixed mass. In these mass and z ranges, environment affects directly also galaxy colours. We suggest a scenario in which the colour depends primarily on stellar mass, but for relatively low mass galaxies the local density modulates this dependence. These galaxies formed more recently, in an epoch when evolved structures were already in place, and their longer SFH allowed environment-driven physical processes to operate during longer periods of time.

Download