Do you want to publish a course? Click here

The High-Order-Multiplicity of Unusually Wide M-dwarf Binaries: Eleven New Triple and Quadruple Systems

96   0   0.0 ( 0 )
 Added by Nicholas Law
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

M-dwarfs in extremely wide binary systems are very rare, and may thus have different formation processes from those found as single stars or close binaries in the field. In this paper we search for close companions to a new sample of 36 extremely wide M-dwarf binaries, covering a spectral type range of M1 to M5 and a separation range of 600 - 6500 AU. We discover 10 new triple systems and one new quadruple system. We carefully account for selection effects including proper motion, magnitude limits, the detection of close binaries in the SDSS, and other sample biases. The bias-corrected total high-order-multiple fraction is 45% (+18%/-16%) and the bias-corrected incidence of quadruple systems is < 5%, both statistically compatible with that found for the more common close M-dwarf multiple systems. Almost all the detected companions have similar masses to their primaries, although two very low mass companions, including a candidate brown dwarf, are found at relatively large separations. We find that the close-binary separation distribution is strongly peaked towards < 30AU separations. There is marginally significant evidence for a change in high-order M-dwarf multiplicity with binding energy and total mass. We also find 2-sigma evidence of an unexpected increased high-order-multiple fraction for the widest targets in our survey, with a high-order-multiple fraction of 21% (+17%/-7%) for systems with separations up to 2000AU, compared to 77% (+9%/-22%) for systems with separations > 4000AU. These results suggest that the very widest M-dwarf binary systems need higher masses to form or to survive.



rate research

Read More

We present the spectroscopic orbits of eleven nearby, mid-to-late M dwarf binary systems in a variety of configurations: two single-lined binaries (SB1s), seven double-lined binaries (SB2s), one double-lined triple (ST2), and one triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065 -- 7165 Angstroms, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7-hour period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light curve data. We find G 123-45 and LTT 11586 to host companions with minimum masses of 41 M_Jup and 44 M_Jup with orbital periods of 35 and 15 days, respectively. We find 2MA 0930+0227 to have a rapidly rotating stellar companion in a 917-day orbital period. GJ 268, GJ 1029, LP 734-34, GJ 1182, G 258-17, and LTT 7077 are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84 days; LP 655-43 is an ST3 with one companion in an 18-day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L 870-44AB and for the outer components of LTT 11586 and LP 655-43.
We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found fifteen new binary systems (3 in Taurus and 12 in Upper Sco) with separations of 3-30 (500-5000 AU) among all of the known members with masses of 2.5-0.012 Msun. The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher-mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the IMF or the field G dwarf distribution. The maximum separation also shows no evidence of a limit at <5000 AU until the abrupt cessation of any wide binary formation at system masses of ~0.3 Msun. We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and do not. In summary, only wide binary systems with total masses <0.3 Msun appear to be unusually wide.
Orbital monitoring of M-type binaries is essential for constraining their fundamental properties. This is particularly useful in young systems, where the extended pre-main sequence evolution can allow for precise isochronal dating. Here, we present the continued astrometric monitoring of the more than 200 binaries of the AstraLux Large Multiplicity Survey, building both on our previous work, archival data, and new astrometric data spanning the range of 2010-2012. The sample is very young overall -- all included stars have known X-ray emission, and a significant fraction (18%) of them have recently also been identified as members of young moving groups in the Solar neighborhood. We identify ~30 targets that both have indications of being young and for which an orbit either has been closed or appears possible to close in a reasonable timeframe (a few years to a few decades). One of these cases, GJ 4326, is however identified as probably being substantially older than has been implied from its apparent moving group membership, based on astrometric and isochronal arguments. With further astrometric monitoring, these targets will provide a set of empirical isochrones, against which theoretical isochrones can be calibrated, and which can be used to evaluate the precise ages of nearby young moving groups.
We present photometric, astrometric, and spectroscopic observations of USco160611.9-193532 AB, a candidate ultrawide (~1600 AU), low-mass (M_tot~0.4 M_sun) multiple system in the nearby OB association Upper Scorpius. We conclude that both components are young, comoving members of the association; we also present high-resolution observations which show that the primary is itself a close binary system. If the Aab and B components are gravitationally bound, the system would fall into the small class of young multiple systems which have unusually wide separations as compared to field systems of similar mass. However, we demonstrate that physical association can not be assumed purely on probabilistic grounds for any individual candidate system in this separation range. Analysis of the associations two-point correlation function shows that there is a significant probability (25%) that at least one pair of low-mass association members will be separated in projection by <15, so analysis of the wide binary population in Upper Sco will require a systematic search for all wide systems; the detection of another such pair would represent an excess at the 98% confidence level.
Aims. We look for common proper motion companions to stars of the nearby young beta Pictoris moving group. Methods. First, we compiled a list of 185 beta Pictoris members and candidate members from 35 representative works. Next, we used the Aladin and STILTS virtual observatory tools, and the PPMXL proper motion and Washington Double Star catalogues to look for companion candidates. The resulting potential companions were subjects of a dedicated astro-photometric follow-up using public data from all-sky surveys. After discarding 67 sources by proper motion and 31 by colour-magnitude diagrams, we obtained a final list of 36 common proper motion systems. The binding energy of two of them is perhaps too small to be considered physically bound. Results. Of the 36 pairs and multiple systems, eight are new, 16 have only one stellar component previously classified as a beta Pictoris member, and three have secondaries at or below the hydrogen-burning limit. Sixteen stars are reported here for the first time as moving group members. The unexpected large number of high-order multiple systems, 12 triples and two quadruples among 36 systems, may suggest a biased list of members towards close binaries or an increment of the high-order-multiple fraction for very wide systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا