Do you want to publish a course? Click here

Quantum Hall induced currents and the magnetoresistance of a quantum point contact

108   0   0.0 ( 0 )
 Added by Alan Usher
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Features in the magnetic moment and QPC resistance are correlated at Landau-level filling factors nu=1, 2 and 4, which demonstrates the common origin of the effects. Temperature and non-linear sweep rate dependences are observed to be similar for the two effects. Furthermore, features in the noise of the induced currents, caused by breakdown of the quantum Hall effect, are observed to have clear correlations between the two measurements. In contrast, there is a distinct difference in the way that the induced currents decay with time when the sweeping field halts at integer filling factor. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split-gate. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, was not observed.



rate research

Read More

The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.
Puzzling results obtained from torque magnetometry in the quantum Hall effect (QHE) regime are presented, and a theory is proposed for their explanation. Magnetic moment saturation, which is usually attributed to the QHE breakdown, is shown to be related to the charge redistribution across the sample.
We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carrier density. The metallic bilayers act as equipotential shorts for edge currents, while closely spaced insulating bilayers guide the flow of electrons in the monolayer constriction, which was locally gated using a scanning gate probe.
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge ($e^*=e/3$). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا