Do you want to publish a course? Click here

Dual-wavelength domain wall solitons in a fiber ring laser

178   0   0.0 ( 0 )
 Added by Han Zhang Dr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental observation of a new type of dark soliton in a fiber laser made of all normal group velocity dispersion fibers. It was shown that the soliton is formed due to the cross coupling between two different wavelength laser beams and has the characteristic of separating the two different wavelength laser emissions. Moreover, we show experimentally that the dual-wavelength dark solitons have a much lower pump threshold than that of the nonlinear Schrodinger equation dark solitons formed in the same laser.



rate research

Read More

We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transverse trapping potential. Systematic numerical analysis reveals a variety of stable nonlinear modes, including stable fundamental solitons and breathers, as well as solitary vortices with winding number $n=1$, while vortices with $n=2$ are unstable, splitting into persistently rotating bound states of two unitary vortices. A characteristic feature of the system is bistability between the fundamental and vortex spatiotemporal solitons.
Dissipative solitons are remarkable localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist in nature, and are seen in far-from-equilibrium systems in many fields including chemistry, biology, and physics. There has been particular interest in studying their properties in mode-locked lasers producing ultrashort light pulses, but experiments have been limited by the lack of convenient measurement techniques able to track the soliton evolution in real-time. Here, we use dispersive Fourier transform and time lens measurements to simultaneously measure real-time spectral and temporal evolution of dissipative solitons in a fiber laser as the turn-on dynamics pass through a transient unstable regime with complex break-up and collision dynamics before stabilizing to a regular mode-locked pulse train. Our measurements enable reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum to provide further physical insight. These findings are significant in showing how real-time measurements can provide new perspectives into the ultrafast transient dynamics of complex systems.
A recent communication [Opt. Commun. doi:10.1016/j.optcom.2010.06.076 (2010)] presents experimental results in which dark pulses are observed in a dispersion-managed (DM) net-anomalous dispersion fiber laser. Disagreement on the formation mechanism proposed in this communication, we would like to indicate a more accurate explanation in order to clarify some potential misunderstanding on dark pulses in fiber lasers.
190 - D. Y. Tang , B. Zhao , L. M. Zhao 2009
We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable CW components; a local type of soliton interaction mediated through the radiative dispersive waves; and the direct soliton interaction. We found that the appearance of the various soliton operation modes observed in the passively mode locked fiber soliton lasers are the direct consequences of these three types of soliton interaction. The soliton interaction in the laser is further numerically simulated based on a pulse tracing technique. The numerical simulations confirmed the existence of the dispersive wave mediated soliton interaction and the direct soliton interaction. Furthermore, it was shown that the resonant dispersive waves mediated soliton interaction in the laser always has the consequence of causing random irregular relative soliton movement, and the experimentally observed states of bound solitons are caused by the direct soliton interaction. In particular, as the solitons generated in the laser could have a profile with long tails, the direct soliton interaction could extend to a soliton separation that is larger than 5 times of the soliton pulse width.
Pulsating behavior is a universal phenomenon in versatile fields. In nonlinear dissipative systems, the solitons could also pulsate under proper conditions and show many interesting dynamics. However, the pulsation dynamics is generally concerned with single soliton case. Herein, by utilizing real-time spectroscopy technique, namely, dispersive Fourier-transform (DFT), we reveal the versatile categories of pulsating solitons in a fiber laser. In particular, the weak to strong explosive behaviors of pulsating soliton, as well as the rogue wave generation during explosions were observed. Moreover, the concept of soliton pulsation was extended to the multi-soliton case. It is found that the simultaneous pulsation of energy, separation and relative phase difference could be observed for solitons inside the molecule, while the pulsations of each individual in multi-soliton bunch could be regular or irregular. These findings would further enrich the ultrafast dynamics of dissipative solitons in nonlinear optical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا