The Habitable Zone Planet Finder: A Proposed High Resolution NIR Spectrograph for the Hobby Eberly Telescope to Discover Low Mass Exoplanets around M Dwarfs


Abstract in English

The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 10m class Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R~ 50,000 and cover the wavelength range 0.9-1.65{mu}m, the Y, J and H NIR bands where most of the flux is emitted by mid-late type M stars, and where most of the radial velocity information is concentrated. Enclosed in a chilled vacuum vessel with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to obtain <1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, as well serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation in the near-infrared (NIR) will also enable a search for close in planets around young active stars, complementing the search space enabled by upcoming high-contrast imaging instruments like GPI, SPHERE and PALM3K. Tests with a prototype Pathfinder instrument have already demonstrated the ability to recover radial velocities at 7-10 m/s precision from integrated sunlight and ~15-20 m/s precision on stellar observations at the HET. These tests have also demonstrated the ability to work in the NIR Y and J bands with an un-cooled instrument. We will also discuss lessons learned about calibration and performance from our tests and how they impact the overall design of the HZPF.

Download