No Arabic abstract
The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 10m class Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R~ 50,000 and cover the wavelength range 0.9-1.65{mu}m, the Y, J and H NIR bands where most of the flux is emitted by mid-late type M stars, and where most of the radial velocity information is concentrated. Enclosed in a chilled vacuum vessel with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to obtain <1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, as well serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation in the near-infrared (NIR) will also enable a search for close in planets around young active stars, complementing the search space enabled by upcoming high-contrast imaging instruments like GPI, SPHERE and PALM3K. Tests with a prototype Pathfinder instrument have already demonstrated the ability to recover radial velocities at 7-10 m/s precision from integrated sunlight and ~15-20 m/s precision on stellar observations at the HET. These tests have also demonstrated the ability to work in the NIR Y and J bands with an un-cooled instrument. We will also discuss lessons learned about calibration and performance from our tests and how they impact the overall design of the HZPF.
We present the scientific motivation and conceptual design for the recently funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared (NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The HPF will cover the NIR Y & J bands to enable precise radial velocities to be obtained on mid M dwarfs, and enable the detection of low mass planets around these stars. The conceptual design is comprised of a cryostat cooled to 200K, a dual fiber-feed with a science and calibration fiber, a gold coated mosaic echelle grating, and a Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7$mu$m cutoff. A uranium-neon hollow-cathode lamp is the baseline wavelength calibration source, and we are actively testing laser frequency combs to enable even higher radial velocity precision. We will present the overall instrument system design and integration with the HET, and discuss major system challenges, key choices, and ongoing research and development projects to mitigate risk. We also discuss the ongoing process of target selection for the HPF survey.
The Habitable zone Planet Finder (HPF) is a fiber fed precise radial velocity spectrograph at the 10 m Hobby Eberly Telescope (HET). Due to its fixed altitude design, the HET pupil changes appreciably across a track, leading to significant changes of the fiber far-field illumination. HPFs fiber scrambler is designed to suppress the impact of these illumination changes on the radial velocities -- but the residual impact on the radial velocity measurements has yet to be probed on sky. We use GJ 411, a bright early type (M2) M dwarf to probe the effects of far-field input trends due to these pupil variations on HPF radial velocities (RVs). These large changes ($sim$ 2x) in pupil area and centroid present a harsh test of HPFs far-field scrambling. Our results show that the RVs are effectively decoupled from these extreme far-field input changes due to pupil centroid offsets, attesting to the effectiveness of the scrambler design. This experiment allows us to test the impact of these changes with large pupil variation on-sky, something we would not easily be able to do at a conventional optical telescope. While the pupil and illumination changes expected at these other telescopes are small, scaling from our results enables us to estimate and bound these effects, and show that they are controllable even for the new and next generation of RV instruments in their quest to beat down instrumental noise sources towards the goal of a few cm/s.
The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12 x 6 arcseconds. For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1 micron, spread between two fiber-fed dual-channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370-470 nm and 460-700 nm at fixed resolving powers of ~1900 and ~1100, respectively, while the red spectrograph, LRS2-R, covers 650-842 nm and 818-1050 nm with both of its channels having a resolving power of ~1800. In this paper, we present a detailed description of the instruments design in which we focus on the departures from the basic VIRUS framework. The primary modifications include the fore-optics that are used to feed the fiber integral field units at unity fill-factor, the cameras correcting optics and detectors, and the volume phase holographic grisms. We also present a model of the instruments sensitivity and a description of specific science cases that have driven the design of LRS2, including systematically studying the spatially resolved properties of extended Lyman-alpha blobs at 2 < z < 3. LRS2 will provide a powerful spectroscopic follow-up platform for large surveys such as HETDEX.
Despite their activity, low-mass stars are of particular importance for the search of exoplanets by the means of Doppler spectroscopy, as planets with lower masses become detectable. We report on the discovery of a planetary companion around HD 180617, a bright J = 5.58 mag, low-mass M = 0.45 M_{sun} star of spectral type M2.5 V. The star, located at a distance of 5.9 pc, is the primary of the high proper motion binary system containing vB 10, a star with one of the lowest masses known in most of the twentieth century. Our analysis is based on new radial velocity (RV) measurements made at red-optical wavelengths provided by the high-precision spectrograph CARMENES, which was designed to carry out a survey for Earth-like planets around M dwarfs. The available CARMENES data are augmented by archival Doppler measurements from HIRES and HARPS. Altogether, the RVs span more than 16 years. The modeling of the RV variations, with a semi-amplitude of K = 2.85-0.25/+0.16m/s yields a Neptune-like planet with a minimum mass of 12.2-1.4/+1.0 M_{Earth} on a 105.90-0.10/+0.09d circumprimary orbit, which is partly located in the host stars habitable zone. The analysis of time series of common activity indicators does not show any dependence on the detected RV signal. The discovery of HD 180617 b not only adds information to a currently hardly filled region of the mass-period diagram of exoplanets around M dwarfs, but the investigated system becomes the third known binary consisting of M dwarfs and hosting an exoplanet in an S-type configuration. Its proximity makes it an attractive candidate for future studies.
The upcoming Wide-Field Upgrade (WFU) has ushered in a new era of instrumentation for the Hobby-Eberly Telescope (HET). Here, we present the design, construction progress, and lab tests completed to date of the blue-optimized second generation Low Resolution Spectrograph (LRS2-B). LRS2-B is a dual-channel, fiber fed instrument that is based on the design of the Visible Integral Field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy eXperiment (HETDEX). LRS2-B utilizes a microlens-coupled integral field unit (IFU) that covers a 7x12 area on the sky having unity fill-factor with ~300 spatial elements that subsample the median HET image quality. The fiber feed assembly includes an optimized dichroic beam splitter that allows LRS2-B to simultaneously observe 370 nm to 470 nm and 460 nm to 700 nm at fixed resolving powers of R approx 1900 and 1200, respectively. We discuss the departures from the nominal VIRUS design, which includes the IFU, fiber feed, camera correcting optics, and volume phase holographic grisms. Additionally, the motivation for the selection of the wavelength coverage and spectral resolution of the two channels is briefly discussed. One such motivation is the follow-up study of spectrally and (or) spatially resolved Lyman-alpha emission from z ~ 2.5 star-forming galaxies in the HETDEX survey. LRS2-B is planned to be a commissioning instrument for the HET WFU and should be on-sky during quarter 4 of 2013. Finally, we mention the current state of LRS2-R, the red optimized sister instrument of LRS2-B.