We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of $20-510$ over the current best limits found using the MINOS near detector.
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
We present an analysis designed to search for Lorentz and CPT violations as predicted by the SME framework using the charged current neutrino events in the MINOS near detector. In particular we develop methods to identify periodic variations in the normalized number of charged current neutrino events as a function of sidereal phase. To test these methods, we simulated a set of 1,000 experiments without Lorentz and CPT violation signals using the standard MINOS Monte Carlo. We performed an FFT on each of the simulated experiments to find the distribution of powers in the sidereal phase diagram without a signal. We then injected a signal of increasing strength into the sidereal neutrino oscillation probability until we found a 5$sigma$ deviation from the mean in the FFT power spectrum. By this method, we can establish upper limits for the Lorentz and CPT violating terms in the SME.
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
The status of Lorentz- and CPT-violation searches using measurements of the anomalous magnetic moment of the muon is reviewed. Results from muon g-2 experiments have set the majority of the most stringent limits on Standard- Model Extension Lorentz and CPT violation in the muon sector. These limits are consistent with calculations of the level of Standard-Model Extension effects required to account for the current 3.7{sigma} experiment-theory discrepancy in the muons g-2. The prospects for the new Muon g-2 Experiment at Fermilab to improve upon these searches is presented.
We searched for a sidereal modulation in the rate of neutrinos produced by the NuMI beam and observed by the MINOS far detector. The detection of such harmonic signals could be a signature of neutrino-antineutrino mixing due to Lorentz and CPT violation as described by the Standard Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect. This is the first report of limits on these neutrino-antineutrino mixing coefficients.
MINOS Collaboration: P. Adamson
,D. J. Auty
,D. S. Ayres
.
(2010)
.
"A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector"
.
Brian Rebel
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا