Do you want to publish a course? Click here

Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

125   0   0.0 ( 0 )
 Added by Martin Asplund
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350,K below log tau < -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.



rate research

Read More

The reconstruction of the solar spectral irradiance (SSI) on various time scales is essential for the understanding of the Earths climate response to the SSI variability. The driver of the SSI variability is understood to be the intensity contrast of magnetic features present on the Sun with respect to the largely non-magnetic quiet Sun. However, different spectral synthesis codes lead to diverging projections of SSI variability. In this study we compare three different radiative transfer codes and carry out a detailed analysis of their performance. We perform the spectral synthesis at the continuum wavelength of 665 nm with the Code for Solar Irradiance (COSI), and the Rybicki-Hummer (RH), and Max Planck University of Chicago Radiative MHD (MURaM) codes for three 3D MHD simulations snapshots, a non-magnetic case, and MHD simulations with 100 G, and 200 G magnetic field strength. We determine the intensity distributions, the intensity differences and ratios for the spectral synthesis codes. We identify that the largest discrepancies originate in the intergranular lanes where the most field concentration occurs. Overall, the applied radiative transfer codes give consistent intensity distributions. Also, the intensity variation as a function of magnetic field strength for the particular 100 G and 200 G snapshots agree within the 2-3% range.
73 - N. A. Silantev 2017
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
A major uncertainty in the structure and dynamics of magnetized, radiation pressure dominated neutron star accretion columns in X-ray pulsars and pulsating ultraluminous X-ray sources is that they are thought to be subject to the photon bubble instability. We present the results of two dimensional radiation relativistic magnetohydrodynamic simulations of a non-accreting, static atmosphere to study the development of this instability assuming isotropic Thomson scattering in the slow diffusion regime that is relevant to neutron star accretion columns. Photon bubbles generally grow faster toward shorter wavelengths, until a maximum growth rate is achieved at the radiation viscosity length scale, which is generally quite small and requires high numerical resolution to simulate. We confirm the consistency between our simulation results and linear theory in detail, and show that the nonlinear evolution inevitably leads to collapse of the atmosphere with the higher resolution simulation collapsing faster due to the presence of shorter length scale nonlinear structures. At least in static atmospheres with horizontally periodic boundary conditions, this resolution dependence may make simulations of the nonlinear dynamics of photon bubble instability in neutron star accretion columns challenging. It remains to be seen whether these difficulties will persist upon inclusion of an accretion flow through the top and magnetically-confined horizontal boundaries through which photons can escape. Our results here provide a foundation for such future work.
Coronal rain consists of cool and dense plasma condensations formed in coronal loops as a result of thermal instability. Previous numerical simulations of thermal instability and coronal rain formation have relied on artificially adding a coronal heating term to the energy equation. To reproduce large-scale characteristics of the corona, using more realistic coronal heating prescription is necessary. We analyse coronal rain formation and evolution in a 3-dimensional radiative magnetohydrodynamic simulation spanning from convection zone to corona which is self-consistently heated by magnetic field braiding as a result of convective motions. We investigate the spatial and temporal evolution of energy dissipation along coronal loops which become thermally unstable. Ohmic dissipation in the model leads to the heating events capable of inducing sufficient chromospheric evaporation into the loop to trigger thermal instability and condensation formation. The cooling of the thermally unstable plasma occurs on timescales comparable to the duration of the individual impulsive heating events. The impulsive heating has sufficient duration to trigger thermal instability in the loop but does not last long enough to lead to coronal rain limit cycles. We show that condensations can either survive and fall into the chromosphere or be destroyed by strong bursts of Joule heating associated with a magnetic reconnection events. In addition, we find that condensations can also form along open magnetic field lines.
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا