Do you want to publish a course? Click here

Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicity

131   0   0.0 ( 0 )
 Added by Luan Ghezzi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The metal content of planet hosting stars is an important ingredient which may affect the formation and evolution of planetary systems. Accurate stellar abundances require the determinations of reliable physical parameters, namely the effective temperature, surface gravity, microturbulent velocity, and metallicity. This work presents the homogeneous derivation of such parameters for a large sample of stars hosting planets (N=117), as well as a control sample of disk stars not known to harbor giant, closely orbiting planets (N=145). Stellar parameters and iron abundances are derived from an automated analysis technique developed for this work. As previously found in the literature, the results in this study indicate that the metallicity distribution of planet hosting stars is more metal-rich by ~0.15 dex when compared to the control sample stars. A segregation of the sample according to planet mass indicates that the metallicity distribution of stars hosting only Neptunian-mass planets (with no Jovian-mass planets) tends to be more metal-poor in comparison with that obtained for stars hosting a closely orbiting Jovian planet. The significance of this difference in metallicity arises from a homogeneous analysis of samples of FGK dwarfs which do not include the cooler and more problematic M dwarfs. This result would indicate that there is a possible link between planet mass and metallicity such that metallicity plays a role in setting the mass of the most massive planet. Further confirmation, however, must await larger samples.



rate research

Read More

192 - N.C. Santos , C. Lovis , G. Pace 2008
We present a study of accurate stellar parameters and iron abundances for 39 giants and 16 dwarfs in the 13 open clusters IC2714, IC4651, IC4756, NGC2360, NGC2423, NGC2447 (M93), NGC2539, NGC2682 (M67), NGC3114, NGC3680, NGC4349, NGC5822, NGC6633. The analysis was done using a set of high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT). These clusters are currently being searched for planets using precise radial velocities. For all the clusters, the derived average metallicities are close to solar. Interestingly, the values derived seem to depend on the line-list used. This dependence and its implications for the study of chemical abundances in giants stars are discussed. We show that a careful choice of the lines may be crucial for the derivation of metallicities for giant stars on the same metallicity scale as those derived for dwarfs. Finally, we discuss the implications of the derived abundances for the metallicity- and mass-giant planet correlation. We conclude that a good knowledge of the two parameters is necessary to correctly disentangle their influence on the formation of giant planets.
This work presents a homogeneous derivation of atmospheric parameters and iron abundances for a sample of giant and subgiant stars which host giant planets, as well as a control sample of subgiant stars not known to host giant planets. The analysis is done using the same technique as for our previous analysis of a large sample of planet-hosting and control sample dwarf stars. A comparison between the distributions of [Fe/H] in planet-hosting main-sequence stars, subgiants, and giants within these samples finds that the main-sequence stars and subgiants have the same mean metallicity of <[Fe/H]> simeq +0.11 dex, while the giant sample is typically more metal poor, having an average metallicity of <[Fe/H]> = -0.06 dex. The fact that the subgiants have the same average metallicities as the dwarfs indicates that significant accretion of solid metal-rich material onto the planet-hosting stars has not taken place, as such material would be diluted in the evolution from dwarf to subgiant. The lower metallicity found for the planet-hosting giant stars in comparison with the planet-hosting dwarfs and subgiants is interpreted as being related to the underlying stellar mass, with giants having larger masses and thus, on average larger-mass protoplanetary disks. In core accretion models of planet formation, larger disk masses can contain the critical amount of metals necessary to form giant planets even at lower metallicities.
The study of chemical abundances in stars with planets is an important ingredient for the models of formation and evolution of planetary systems. In order to determine accurate abundances, it is crucial to have a reliable set of atmospheric parameters. In this work, we describe the homogeneous determination of effective temperatures, surface gravities and iron abundances for a large sample of stars with planets as well as a control sample of stars without giant planets. Our results indicate that the metallicity distribution of the stars with planets is more metal rich by ~ 0.13 dex than the control sample stars.
The vast majority (>=90%) of presolar SiC grains identified in primitive meteorites are relics of ancient asymptotic giant branch (AGB) stars, whose ejecta were incorporated into the Solar System during its formation. Detailed characterization of these ancient stardust grains has revealed precious information on mixing processes in AGB interiors in great detail. However, the mass and metallicity distribution of their parent stars still remains ambiguous, although such information is crucial to investigating the slow neutron capture process, whose efficiency is mass- and metallicity-dependent. Using a well-known Milky Way chemo-dynamical model, we follow the evolution of the AGB stars that polluted the Solar System at 4.57 Gyr ago and weighted the stars based on their SiC dust productions. We find that presolar SiC in the Solar System predominantly originated from AGB stars with M~2 Msun and Z~Zsun. Our finding well explains the grain-size distribution of presolar SiC identified in situ in primitive meteorites. Moreover, it provides complementary results to very recent papers dealing with the characterization of parent stars of presolar SiC.
70 - Antonio Claret 2016
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical values of the overshooting parameter alpha(ov) for each star. Our models use the common prescription for the overshoot distance d(ov) = alpha(ov) Hp, where Hp is the pressure scale height at the edge of the convective core as given by the Schwarzschild criterion, and alpha(ov) is a free parameter. We find a relation between alpha(ov) and mass that is defined much more clearly than in previous work, and indicates a significant rise up to about 2 solar masses followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary state at a given mass, or with metallicity at a given mass despite the fact that the stars in our sample span a range of a factor of ten in [Fe/H], from -1.01 to +0.01.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا