Sub-Cycle Strong-Field Interferometry


Abstract in English

A nonlinear interferometry scheme is described theoretically to induce and resolve electron wave- function beating on time scales shorter than the optical cycle of the time-delayed pump and probe pulses. By employing two moderately intense few-cycle laser fields with a stable carrier-envelope phase, a large range of the entire electronic level structure of a quantum system can be retrieved. In contrast to single-photon excitation schemes, the retrieved electronic states include levels that are both dipole- and non-dipole-accessible from the ground electronic state. The results show that strong-field interferometry can reveal both high-resolution and broad-band spectral information at the same time with important consequences for quantum-beat spectroscopy on attosecond or even shorter time scales.

Download